Abstract

Given the increasing demand for power density and lightweight specifications, the discrete transistor outline-type package is no longer sufficient for personal vehicle. The new generation of high-power drive needs excellent heat dissipation and miniaturized system simultaneously. However, a traditional architecture of power module, direct bonding copper substrate, has serious warpage deformation and limitation of the heat dissipation. Therefore, a power module with an insulated metal substrate (IMS) is proposed. The proposed power module has a smaller volume, better electrical and thermal performance, and high reliability to be utilized in personal vehicles. A fine-quality assembly process is also presented and verified. Furthermore, two different kinds of molding materials that are widely used in power modules, silicone gel, and epoxy, are utilized. The IMS-type module with silicone gel molding fails the temperature cycling test (TCT) with the delamination of the solder layer. The module with epoxy successfully passes the automotive-grade reliability tests, including TCT, highly accelerated stress test, high-temperature reverse bias, and intermittent operational life test according to the standard of AEC-Q101. The finite element analysis for the IMS power module is presented and analyzed under the condition of TCT to estimate the mechanical behavior of the solder layer. The equivalent plastic strain of solder layer with silicone gel and epoxy is 0.76 and 0.08, respectively, after TCT, separately. The main reason can be attributed to the coefficient of thermal expansion between the IMS and molding material. According to the analyzed results, the effect of molding material should not be ignored in the power modulus.

References

1.
Lu
,
H.
,
Bailey
,
C.
, and
Yin
,
C.
,
2009
, “
Design for Reliability of Power Electronics Modules
,”
Microeletron. Reliab.
,
49
(
9–11
), pp.
1250
1255
.10.1016/j.microrel.2009.07.055
2.
Yang
,
Y.
,
Gomba
,
L. D.
,
Rodriguez
,
R.
,
Mak
,
C.
, and
Emadi
,
A.
,
2020
, “
Automotive Power Module Packaging: Current Status and Future Trends
,”
IEEE Access
,
8
, pp.
160126
160144
.10.1109/ACCESS.2020.3019775
3.
Broughton
,
J.
,
Smet
,
V.
,
Tummala
,
R. R.
, and
Joshi
,
Y. K.
,
2018
, “
Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
040801
.10.1115/1.4040828
4.
George
,
A.
,
Zipprich
,
J.
,
Breitenbach
,
M.
,
Klingler
,
M.
, and
Nowottnick
,
M.
,
2018
, “
Reliability Investigation of Large Area Solder Joints in Power Electronics Modules and Its Simulative Representation
,”
Microeletron. Reliab.
,
88–90
, pp.
762
767
.10.1016/j.microrel.2018.06.049
5.
Qian
,
R.
,
Yao
,
A.
,
Xu
,
B.
,
Liu
,
Y.
, and
Chew
,
C.
,
2018
, “
High Power Module Package Mounting and Temperature Cycling Reliability Study by Simulation
,”
Proceedings of the ICEPT
,
IEEE
,
Shanghai, China
, Aug. 8–11, pp.
1578
1583
,
Paper No. ICEPT. 8480527
.10.1109/ICEPT.2018.8480527
6.
Lee
,
C.-C.
,
Kao
,
K.-S.
,
Lin
,
L.
,
Chang
,
J.-Y.
,
Leu
,
F.-J.
,
Lu
,
Y.-L.
, and
Chang
,
T.-C.
,
2014
, “
Investigation of Pre-Bending Substrate Design in Packaging Assembly of an IGBT Power Module
,”
Microelectron. Eng.
,
120
, pp.
106
113
.10.1016/j.mee.2013.08.011
7.
Zhou
,
Y.
,
Xu
,
L.
, and
Liu
,
S.
,
2015
, “
Optimization for Warpage and Residual Stress Due to Reflow Process in IGBT Modules Based on Pre-Warped Substrate
,”
Microelectron. Eng.
,
136
, pp.
63
70
.10.1016/j.mee.2015.04.019
8.
Bouarroudj
,
M.
,
Khatir
,
Z.
,
Ousten
,
J. P.
, and
Lefebvre
,
S.
,
2008
, “
Temperature-Level Effect on Solder Lifetime During Thermal Cycling of Power Modules
,”
IEEE Trans. Device Mater. Reliab.
,
8
(
3
), pp.
471
477
.10.1109/TDMR.2008.2002354
9.
Tao
,
Q. B.
,
Benabou
,
L.
,
Le
,
V. N.
,
Hwang
,
H.
, and
Luu
,
D. B.
,
2017
, “
Viscoplastic Characterization and Post-Rupture Microanalysis of a Novel Lead-Free Solder With Small Additions of Bi, Sb and Ni
,”
J. Alloy. Compd.
,
694
, pp.
892
904
.10.1016/j.jallcom.2016.10.025
10.
Micol
,
A.
,
Zeanh
,
A.
,
Lhommeau
,
T.
,
Azzopardi
,
S.
,
Woirgard
,
E.
,
Dalverny
,
Q.
, and
Karama
,
M.
,
2009
, “
An Investigation Into the Reliability of Power Modules Considering Baseplate Solders Thermal Fatigue in Aeronautical Applications
,”
Microelectron. Reliab.
,
49
(
9–11
), pp.
1370
1374
.10.1016/j.microrel.2009.06.046
11.
Hung
,
T. Y.
,
Huang
,
C. J.
,
Lee
,
C. C.
,
Wang
,
C. C.
,
Lu
,
K. C.
, and
Chiang
,
K. N.
,
2013
, “
Investigation of Solder Crack Behavior and Fatigue Life of the Power Module on Different Thermal Cycling Period
,”
Microelectron. Eng.
,
107
, pp.
125
129
.10.1016/j.mee.2012.09.014
12.
Ji
,
B.
,
Song
,
X.
,
Sciberras
,
E.
,
Cao
,
W.
,
Hu
,
Y.
, and
Pickert
,
V.
,
2015
, “
Multiobjective Design Optimization of IGBT Power Modules Considering Power Cycling and Thermal Cycling
,”
IEEE Trans. Power Electron.
,
30
(
5
), pp.
2493
2504
.10.1109/TPEL.2014.2365531
13.
Wu
,
K. C.
,
Lin
,
S. Y.
,
Hung
,
T. Y.
, and
Chiang
,
K. N.
,
2015
, “
Reliability Assessment of Packaging Solder Joints Under Different Thermal Cycle Loading Rates
,”
IEEE Trans. Device Mater. Reliab.
,
15
(
3
), pp.
437
442
.10.1109/TDMR.2015.2462726
14.
Van Godbold
,
C.
,
Sankaran
,
V. A.
, and
Hudgins
,
J. L.
,
1997
, “
Thermal Analysis of High-Power Modules
,”
IEEE Trans. Power Electron.
,
12
(
1
), pp.
3
11
.10.1109/63.554164
15.
Takahashi
,
T.
,
Kimure
,
Y.
,
Ishibashi
,
H.
,
Yoshida
,
H.
, and
Otsubo
,
Y.
,
2016
, “
A 1700V-IGBT Module and IPM With New Insulated Metal Baseplate (IMB) Featuring Enhance Isolation Properties and Thermal Conductivity
,”
Proceedings of PCIM
,
Nuremberg, Germany
, May 10–12, pp.
342
347
.https://ieeexplore.ieee.org/document/7499378
16.
Gurpinar
,
E.
,
Ozpinecu
,
B.
, and
Chowdhury
,
S.
,
2020
, “
Design, Analysis, Comparison, and Experimental Validation of Insulated Metal Substrates for High-Power Wide-Bandgap Power Modules
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041107
.10.1115/1.4047409
17.
Cheng
,
J. Y.
,
Fun
,
S. Y.
,
Wu
,
S. T.
,
Leu
,
F. J.
,
Lo
,
Y. Y.
,
Chiu
,
P. K.
,
Yu
,
T. J.
,
Wu
,
H. L.
,
Han
,
W. K.
,
Tzeng
,
C. M.
,
Hsu
,
S. F.
,
Kao
,
K. S.
,
Lin
,
H. H.
,
Change
,
T. C.
,
Yamaucji
,
S.
,
Anai
,
K.
,
Jo
,
J. L.
, and
Sakaue
,
T.
,
2020
, “
The Development of High Performance in Hybrid SiC Power Integrated Module (PIM)
,”
Proceedings of PCIM
,
Germany
, July 7–8, pp.
972
976
.https://ieeexplore.ieee.org/abstract/document/9178114
18.
Lee
,
h.
,
Smet
,
V.
, and
Tummala
,
R.
,
2020
, “
A Review of SiC Power Module Packaging Technologies: Challenge, Advances, and Emerging Issues
,”
IEEE J. Emerg. Sel. Top. Power Electron
,.,
8
(
1
), pp.
239
255
.10.1109/JESTPE.2019.2951801
19.
Ohara
,
K.
,
Masumoto
,
H.
,
Takahashi
,
T.
,
Matsumoto
,
M.
, and
Otsubo
,
Y.
,
2015
, “
A New IGBT Module With Insulated Metal Baseplate(IMB) and 7th Generation Chips
,”
Proceedings of PCIM
,
Nuremberg, Germany
, May 19–20, pp.
1145
1148
.https://ieeexplore.ieee.org/document/7149145
20.
Kim
,
K. S.
,
Lee
,
Y. K.
,
Kwak
,
Y. H.
,
Park
,
J. H.
,
Ha
,
J.
,
Shin
,
G. Y.
, and
Suh
,
B. S.
,
2013
, “
Novel Substrate Technology for IPM (Intelligent Power Module) Applications: Structural, Thermal and Electrical Characteristics
,”
Proceedings of EMAP
,
Lantau Island, China
, Dec. 13–16,
Paper No. EMAP2012.6507919
.10.1109/EMAP.2012.6507919
21.
Hsu
,
H. C.
,
Cheng
,
L. K.
,
Chi
,
W. H.
, and
Liao
,
H. K.
,
2020
, “
Characteristics of Power Module With New Advanced Substrate
,”
Proceedings of IMPCT
,
Taipei, Taiwan
, Oct. 21–23, pp.
243
246
,
Paper No. IMPACT50485.2020.9268538
.10.1109/IMPACT50485.2020.9268538
22.
Yu
,
T. J.
,
Kao
,
K. S.
,
Chang
,
J. Y.
,
Lin
,
H. H.
,
Chiu
,
P. K.
,
Leu
,
F. J.
, and
Chang
,
T. C.
,
2019
, “
The Development of High Thermal Dissipation Intelligent Power Module Packaging Technology
,”
Proceedings of IMPACT
,
Taipei, Taiwan
, Oct. 24–26, pp.
75
77
,
Paper No. IMPACT2018.8625745
.10.1109/IMPACT.2018.8625745
23.
Asada
,
S.
,
Kondo
,
S.
,
Kaji
,
Y.
, and
Yoshida
,
H.
,
2016
, “
Resin Encapsulation Combined With Insulated Metal Baseplate for Improving Power Module Reliability
,”
Proceedings of PCIM
,
Nuremberg, Germany
, May 10–12, pp.
326
330
.https://ieeexplore.ieee.org/document/7499375
24.
Kaji
,
Y.
,
Hatanaka
,
Y.
,
Hiramatsu
,
S.
,
Kondo
,
S.
,
Asada
,
S.
, and
Otsubo
,
Y.
,
2016
, “
Novel IGBT Modules With Epoxy Resin Encapsulation and Insulating Metal Baseplate
,”
Proceedings of ISPSD
,
Prague, Czech Republic
, June 12–16, pp.
475
478
, Paper No.
ISPSD2016.7520881
.10.1109/ISPSD.2016.7520881
You do not currently have access to this content.