Abstract

Numerous technology breakthroughs have been made in image sensor development in the past two decades. Image sensors have evolved into a technology platform to support many applications. Their successful implementation in mobile devices has accelerated market demand and established a business platform to propel continuous innovation and performance improvement extending to surveillance, medical, and automotive industries. This overview briefs the general camera module and the crucial technology elements of chip stacking architectures and advanced interconnect technologies. This study will also examine the role of pixel electronics in determining the chip stacking architecture and interconnect technology of choice. It is conducted by examining a few examples of CMOS image sensors (CIS) for different functions such as visible light detection, single photon avalanche photodiode (SPAD) for low light detection, rolling shutter, and global shutter, and depth sensing and light detection and ranging (LiDAR). Performance attributes of different architectures of chip stacking are overviewed. Direct bonding followed by Via-last through silicon via (Via-last TSV) and hybrid bonding (HB) technologies are identified as newer and favorable chip-to-chip interconnect technologies for image sensor chip stacking. The state-of-the-art ultrahigh-density interconnect manufacturability is also highlighted.

References

1.
Cannon
,
2020
, “
Unprecedented Resolution in a Compact CMOS Sensor”, Cannon, accessed Apr. 21, 2020
,” https://canon-cmos-sensors.com/canon-2u250mrxs-250mp-cmos-sensor/
2.
Lapedus
,
M.
,
2020
, “
Scaling CMOS Image Sensors
,” Semiconductor Engineering, accessed Apr. 20, 2020, https://semiengineering.com/scaling-cmos-image-sensors/
3.
Samsung, 2021, “Galaxy 5G Specifications,” Samsung, accessed Aug. 27, 2021,
https://www.samsung.com/us/mobile/galaxy-s20-5g/specs/
4.
Kurino
,
H.
,
Lee
,
K. W.
,
Nakamura
,
T.
,
Sakuma
,
K.
,
Park
,
K. T.
,
Miyakawa
,
N.
,
Shimazutsu
,
H.
,
Kim
,
K. Y.
,
Inamura
,
K.
, and
Koyanagi
,
M.
,
1999
, “
Intelligent Image Sensor Chip With Three Dimensional Structure
,”
IEEE IEDM 1999
, Washington, DC, Dec. 5–6, pp.
879
882
.10.1109/IEDM.1999.824289
5.
Bhansali
,
S.
,
Chapman
,
G. H.
,
Friedman
,
E.
,
Ismail
,
Y.
,
Mukund
,
P. R.
,
Tebbe
,
D.
, and
Jain
,
V.
,
2004
, “
3-D Heterogeneous Sensor System on a Chip for Defense and Security Applications
,”
Unattended/Unmanned Ground, Ocean, and Air Sensor Technologies and Applications VI, Proc. of SPIE
, Bellingham, WA, Sept., Vol.
5417
, pp.
413
424
.10.1117/12.548199
6.
Sony
,
2020
, “
Imaging and Sensing Technology
,” Sony Semiconductor Solutions Group, accessed Apr. 24, 2020, https://www.sony-semicon.co.jp/e/technology/imaging-sensing/
7.
Tsugawa
,
H.
,
Takahashi
,
H.
,
Nakamura
,
R.
,
Umebayashi
,
T.
,
Ogita
,
T.
,
Okano
,
H.
,
Iwase
,
K.
,
Kawashima
,
H.
,
Yamasaki
,
T.
,
Yoneyama
,
D.
,
Hashizume
,
J.
,
Nakajima
,
T.
,
Murata
,
K.
,
Kanaishi
,
Y.
,
Ikeda
,
K.
,
Tatani
,
K.
,
Nagano
,
T.
,
Nakayama
,
H.
,
Haruta
,
T.
, and
Nomoto
,
T.
,
2017
, “
Pixel/DRAM/Logic 3-Layer Stacked CMOS Image Sensor Technology
,”
IEEE IEDM 2017
, San Francisco, CA, Dec. 2–6, pp.
56
59
.10.1109/IEDM.2017.8268317
8.
Sukegawa
,
S.
,
Umebayashi
,
T.
,
Nakajima
,
T.
,
Kawanobe
,
H.
,
Koseki
,
K.
,
Hirota
,
I.
,
Haruta
,
T.
,
Kasai1
,
M.
,
Fukumoto
,
K.
,
Wakano
,
T.
,
Inoue
,
K.
,
Takahashi
,
H.
,
Nagano
,
T.
,
Nitta
,
Y.
,
Hirayama
,
T.
, and
Fukushima
,
N.
,
2013
, “
A 1/4-Inch 8Mpixel Back-Illuminated Stacked CMOS Image Sensor
,”
2013 International Solid-State Circuits Conference Proceeding
,
San Francisco, CA, Feb. 17–21, pp.
484
486
.10.1109/ISSCC.2013.6487825
9.
Venezia
,
V. C.
,
Hsiung
,
A. C.
,
Yang
,
W. Z.
,
Zhang
,
Y.
,
Zhao
,
C.
,
Lin
,
Z.
, and
Grant
,
L. A.
,
2018
, “
Second Generation Small Pixel Technology Using Hybrid Bond Stacking
,”
Sensor
,
18
(
3
), p.
667
.10.3390/s18020667
10.
Yu
,
D.
,
Lee
,
C. J.
,
Park
,
M.
,
Park
,
J.
,
Hwang
,
S.
,
Lee
,
J.
,
Yu
,
S.
,
Shin
,
H.
,
Kim
,
B.
,
Choi
,
J.
,
Jung
,
S.
,
Kwon
,
M.
,
Ha
,
I.
,
Kim
,
C.
,
Cho
,
S.
,
Li
,
S.
,
Kim
,
W.
,
Kim
,
M.
,
Park
,
S.
,
Lee
,
K.
,
Ranjan
,
R.
,
Maeda
,
S.
, and
Jeong
,
G.
,
2019
, “
14 nm FinFET Process Technology Platform for Over 100M Pixel Density and Ultra Low Power 3D Stack CMOS Image Sensor
,”
IEEE, IEDM 2019
, San Francisco, CA, Dec. 7–11, pp.
158
161
.10.1109/IEDM19573.2019.8993567
11.
Charbon
,
E.
,
Bruschini
,
C.
, and
Lee
,
M.
,
2018
, “
3D-Stacked CMOS SPAD Image Sensors: Technology and Applications
,” IEEE 2018 25th IEEE International Conference on Electronics, Circuits and Systems (
ICECS
), Bordeaux, France, Dec. 9–12, pp.
1
4
.10.1109/ICECS.2018.8617983
12.
Miyauchi
,
K.
,
Mori
,
K.
,
Otaka
,
T.
,
Isozaki
,
T.
,
Yasuda
,
N.
,
Tsai
,
A.
,
Sawai
,
Y.
,
Owada
,
H.
,
Takayanagi
,
I.
, and
Nakamura
,
J.
,
2020
, “
A Stacked Back Side-Illuminated Voltage Domain Global Shutter CMOS Image Sensor With a 4.0 μm Multiple Gain Readout Pixel
,”
Sensor
,
20
, p.
486
.10.3390/s20020486
13.
Miura
,
T.
,
Sakakibara
,
M.
,
Takahashi
,
H.
,
Taura
,
T.
,
Tatani
,
K.
,
Oike
,
Y.
, and
Ezaki
,
T.
,
2019
, “
A 6.9 μm Pixel-Pitch 3D Stacked Global Shutter CMOS Image Sensor With 3M Cu-Cu Connections
,” 2019 International 3D Systems Integration Conference (
3DIC
), Sandai, Japan, Oct. 8–10, Paper No. 3DIC2019-4050.10.1109/3DIC48104.2019.9058832
14.
Henderson
,
R. K.
,
Johnston
,
N.
,
Hutchings
,
S. W.
,
Gyongy
,
I.
,
Abbas
,
T. A.
,
Dutton
,
N.
,
Tyler
,
M.
,
Chan
,
S.
, and
Leach
,
J.
,
2019
, “
A 256 × 256 40 nm/90 nm CMOS 3D-Stacked 120 dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager
,” IEEE 2019 International Solid-State Circuit Conference (
ISSCC
), San Francisco, CA, Feb. 17–21, pp.
106
108
.10.1109/ISSCC.2019.8662355
15.
Yoshida
,
J.
,
2020
, “
Breaking Down iPAD Pro 11's LiDAR Scanner
,” EE Times, accessed June 5, 2020, https://www.eetimes.com/breaking-down-ipad-pro-11s-lidar-scanner/#
16.
Manda
,
S.
,
Matsumoto
,
R.
,
Saito
,
S.
,
Maruyama
,
S.
,
Minari
,
H.
,
Hirano
,
T.
,
Takachi
,
T.
,
Fujii
,
N.
,
Yamamoto
,
Y.
,
Zaizen
,
Y.
,
Hirano
,
T.
, and
Iwamoto
,
H.
,
2019
, “
High-Definition Visible-SWIR InGaAs Image Sensor Using Cu-Cu Bonding of III-V to Silicon Wafer
,”
IEEE IEDM 2019
, San Francisco, CA, Dec. 7–11, pp.
390
393
.10.1109/IEDM19573.2019.8993432
17.
Corp
,
S.
,
2020
, “
Contributing to the Development of Diverse Industrial Equipment by Delivering Compactness and Imaging Over a Broad Range of Wavelengths
,” Press Release, Tokyo, Japan, accessed May 12, 2020, https://www.sony.net/SonyInfo/News/Press/202005/20-036E/
18.
Wang
,
L.
,
Fountain
,
G.
,
Lee
,
B.
,
Gao
,
G.
,
Uzoh
,
C.
,
McGrath
,
S.
,
Enquist
,
P.
,
Arkalgud
,
S.
, and
Mirkarimi
,
L.
,
2017
, “
Direct Bond Interconnect (DBI) for Fine-Pitch Bonding in 3D and 2.5D Integrated Circuits
,”
2017 Pan Pacific Microelectronics Symposium
, Kauai, Hl, Feb. 2–9.https://ieeexplore.ieee.org/document/7859568
19.
Kagawa
,
Y.
,
Hida
,
S.
,
Kobayashi
,
Y.
,
Takahashi
,
K.
,
Miyanomae
,
S.
,
M. Kawamura
,
M.
,
Kawashima
,
H.
,
Yamagishi
,
H.
,
Hirano
,
T.
,
Tatani
,
K.
,
Nakayama
,
H.
,
Ohno
,
K.
,
Iwamoto
,
H.
, and
Kadomura
,
S.
,
2019
, “
The Scaling of Cu-Cu Hybrid Bonding for High Density 3D Chip Stacking
,”
IEEE, Proceedings of 2019 Electron Devices Technology Manufacturing Conference
(
EDTM
), Singapore, Mar. 12–15, pp.
297
299
.10.1109/EDTM.2019.8731186
20.
Yole Development
,
2020
, “
Is Consumerization of Thermal Sensing Around the Corner?
,” Yole Development, accessed June 25, 2020. https://www.i-micronews.com/is-consumerization-of-thermal-sensing-around-the-corner/
21.
O'Dea
,
S.
,
2020
, “Smartphones – Statistics and Facts,” Statista, accessed June 26, 2020, https://www.statista.com/topics/840/smartphones/
22.
Enquist
,
P.
,
2019
, “
Direct Bond Technology Enables CMOS Image Sensor Evolution
,” Fierce Electronics, Jan. 8, 2019.
23.
Samsung
,
2017
, “
The New 3-Stack ISOCELL Fast 2L3 With Integrated DRAM Supports Super-Slow Motion, Low-Light Shooting, Real-Time HDR Imaging, While Minimizing Picture Distortion
,” Press Release, Feb. 26, 2018, South Korea.
24.
Juyeop
,
H.
,
2017
, “
Samsung Electronics Developed Its Own Image Sensors That Can Take 1,000 Pictures in a Second
,” Korea IT News, accessed Sept. 18, 2017, https://english.etnews.com/20170918200001
25.
Ohta
,
J.
,
2008
,
Smart CMOS Image Sensors and Applications
,
CRC Press, Taylor and Francis Group
,
Boca Raton, FL
.
26.
Liu
,
R.
, and
Cambou
,
P.
,
2020
,
CMOS Camera Module Industry for Consumer & Automotive 2020
,
Sample, System Plus Consulting, Nantes, France
.
27.
Oshiyama
,
I.
,
Yokogawa
,
S.
,
Ikeda
,
H.
,
Ebiko
,
Y.
,
Hirano
,
T.
,
Saito
,
S.
,
Oinoue
,
T.
,
Yagimoto
,
Y.
, and
Iwamoto
,
H.
,
2017
, “
Near Infrared Sensitivity Enhancement of a Back Illuminated Complementary Metal Oxide Semiconductor Image Sensor With a Pyramid Surface for Diffraction Structure
,”
IEEE 2017 IEDM
, San Francisco, CA, Dec. 2–6, pp.
397
400
.
28.
Monno
,
Y.
,
Teranaka
,
H.
,
Yoshizaki
,
K.
,
Tanaka
,
M.
, and
Okutomi
,
M.
,
2019
, “
Single-Sensor RGB-NIR Imaging: High-Quality System Design and Prototype Implementation
,”
IEEE Sens. J.
,
19
(
2
), pp.
497
507
.10.1109/JSEN.2018.2876774
29.
Machida
,
S.
,
Shishido
,
S.
,
Tokuhara
,
T.
,
Yanagida
,
M.
,
Yamada
,
T.
,
Izuchi
,
M.
,
Sato
,
Y.
,
Miyake
,
Y.
,
Nakata
,
M.
,
Murakami
,
M.
,
Harada
,
M.
, and
Inoue
,
Y.
,
2018
, “
A 2.1-Mpixel Organic Film-Stacked RGB-IR Image Sensor With Electrically Controllable IR Sensitivity
,”
IEEE J. Solid-State Circuits
,
53
(
1
), pp.
229
235
.10.1109/JSSC.2017.2769341
30.
Ominvision
,
2020
, “
OmniVision Unveils Nyxel® 2 Technology, Extends Lead in No-Light, Near-Infrared CMOS Image Sensing Performance for Machine and Night Vision
,” Product Release, Omnivision, Santa Clara, CA, Mar. 9.
31.
TechInsights
,
2020
, “
Hybrid Bonding Review
,” Image Sensor World, accessed Oct. 1, 2020, https://image-sensors-world.blogspot.com/2020/10/hybrid-bonding-review.html
32.
Kwon
,
M.
,
Lim
,
S.
,
Lee
,
H.
,
Ha
,
I.
,
Kim
,
M.
,
Seo
,
I.
,
Lee
,
S.
,
Choi
,
Y.
,
Kim
,
K.
,
Lee
,
H.
,
Kim
,
W.
,
Park
,
S.
,
Koh
,
K.
,
Lee
,
J.
, and
Park
,
Y.
,
2020
, “
A Low-Power 65/14 nm Stacked CMOS Image Sensor
,”
2020 IEEE International Symposium on Circuits and Systems (ISCAS)
, Sevilla, Oct. 10–21, pp.
1
4
.
33.
PRnewswire
,
2017
, “
Leti and EVG Show World First 300 mm Wafer-to-Wafer Direct Hybrid Bonding With 1um Pitch
,” Image Sensor World, accessed Nov. 13, 2017, https://image-sensors-world.blogspot.com/2017/11/leti-and-evg-show-worlds-first-300-mm.html
34.
PRnewswire
,
2018
, “EVG Wafer Bonding Alignment Accuracy Improved to 50 nm,” Image Sensor World, accessed July 4, 2018, https://image-sensors-world.blogspot.com/2018/07/evg-wafer-bonding-machine-alignment.html
35.
Schutte
,
C.
, and
Moreno
,
D.
,
2020
,
EV Group Addresses Key Process Gap in Heterogeneous Integration With Collective Die-to-Wafer Hybrid and Fusion Bonding Demonstrations
,
EVG Press Release
,
St. Florian, Austria
.
36.
Bhowmik
,
P.
,
Pantho
,
M. H.
,
Asadinia
,
M.
, and
Bobda
,
C.
,
2018
, “
Design of a Reconfigurable 3D Pixel-Parallel Neuromorphic Architecture for Smart Image Sensor
,”
2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(
CVPRW
), Salt Lake City, UT, June, pp.
18
22
.10.1109/CVPRW.2018.00110
37.
Dong
,
Q.
,
Yang
,
K.
,
Fick
,
L.
,
Fick
,
D.
,
Blaauw
,
D.
, and
Sylvester
,
D.
,
2017
, “
Power and Compact Analog-to-Digital Converter Using Spintronic Racetrack Memory Devices
,”
IEEE Trans. Very Large Scale Integration (VLSI) Syst.
,
25
(
3
), pp.
907
918
.10.1109/TVLSI.2016.2622224
38.
Cotton-Martin
,
J.
, “
Hyperspectral and Multispectral Imaging
,” Report, photonics.com, accessed Aug. 27, 2021, https://www.photonics.com/Articles/Hyperspectral_and_Multispectral_Imaging/a65595
39.
Heves
,
E.
, and
Gurbuz
,
Y.
,
2014
, “
Highly Responsive, Solution-Based Al/PbS and Au-Ti/PbS Schottky Photodiodes for SWIR Detection
,”
IEEE Sens. J.
,
14
(
3
), pp.
816
820
.10.1109/JSEN.2013.2288920
40.
Oka
,
H.
,
Inoue
,
K.
,
Nguyen
,
T. T.
,
Kuroki
,
S.
,
Hosoi1
,
T.
,
Shimura
,
T.
, and
Watanabe
,
H.
,
2017
, “
Back-Side Illuminated GeSn Photodiode Array on Quartz Substrate Fabricated by Laser-Induced Liquid-Phase Crystallization for Monolithically-Integrated NIR Imager Chip
,”
2017 IEEE International Electron Devices Meeting (IEDM)
, Dec. 2–6, 2017,
San Francisco, CA,
pp.
393
396
.
41.
He
,
X.
,
Liu
,
Y.
,
Ganesan
,
K.
,
Ahnood
,
A.
,
Beckett
,
P.
,
Eftekhari
,
F.
,
Smith
,
D.
,
Uddin
,
M. H.
,
Skafidas
,
E.
,
Nirmalathas
,
A.
, and
Unnithan
,
R. R.
,
2020
, “
A Single Sensor Based Multispectral Imaging Camera Using a Narrow Spectral Band Color Mosaic Integrated on the Monochrome CMOS Image Sensor
,”
APL Photonics
,
5
(
4
), p.
046104
.10.1063/1.5140215
42.
Jia
,
Y.
,
Kyaw
,
K. L.
, and
Carreon
,
T. J.
,
2019
, “
Thermal and Mechanical Analysis of Imaging Ball Grid Array Image Sensor Package
,”
21st Electronics Packaging Technology Conference,
Singapore, Dec. 2–4, pp.
560
565
.
43.
Chambion
,
B.
,
Caplet
,
S.
,
Kopfer
,
J. M.
,
Vandeneynde
,
A.
,
Diels
,
W.
,
de Kerckhove
,
A.
,
Peray
,
P.
, and
Henry
,
D.
,
2018
, “
Curved Full-Frame CMOS Sensor: Impact on Electro-Optical Performances
,” 2018 IEEE 7th Electronic System-Integration Technology Conference (
ESTC
), Dresden, Germany, Sept.
18
21
.10.1109/ESTC.2018.8546459
44.
Wang
,
Y.
,
Qin
,
F.
,
Ma
,
S.
,
Wang
,
J.
,
Xiao
,
A.
, and
Zhao
,
S.
,
2020
, “
Process Development of 3D WLCSP for Ultra-Thin CMOS Image Sensor
,” 2020 21st International Conference on Electronic Packaging Technology (
ICEPT
), Guangdong, China, Aug.
12
15
.10.1109/ICEPT50128.2020.9202985
45.
Venezia
,
V. C.
,
Hsiung
,
A. C.
,
Ai
,
K.
,
Zhao
,
X.
,
Lin
,
Z.
,
Mao
,
D.
,
Yazdani
,
A.
,
Webster
,
E. A.
, and
Grant
,
L. A.
,
2018
, “
1.5 μm Dual Conversion Gain, Backside Illuminated Image Sensor Using Stacked Pixel Level Connections With 13ke- Full-Well Capacitance and 0.8e- Noise
,”
IEEE IEDM 2018
, San Francisco, CA, Dec. 1–5, pp.
217
220
.10.1109/IEDM.2018.8614484
46.
Pavia
,
J. M.
,
Scandini
,
M.
,
Lindner
,
S.
,
Wolf
,
M.
, and
Charbon
,
E.
,
2015
, “
A 1 × 400 Backside-Illuminated SPAD Sensor With 49.7 ps Resolution, 30 pJ/Sample TDCs Fabricated in 3D CMOS Technology for Near-Infrared Optical Tomography
,”
IEEE J. Solid-State Circuits
,
50
(
10
), pp.
2406
2418
.10.1109/JSSC.2015.2467170
47.
Han
,
J.
,
Zhou
,
C.
,
Duan
,
P.
,
Tang
,
Y.
,
Xu
,
C.
,
Xu
,
C.
,
Huang
,
T.
, and
Shi
,
B.
,
2020
, “
Neuromorphic Camera Guided High Dynamic Range Imaging
,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (
CVPR
), Seattle, WA, June 13–19, pp.
1730
1739
.10.1109/CVPR42600.2020.00180
48.
Steffen
,
L.
,
Reichard
,
D.
,
Weinland
,
J.
,
Kaiser
,
J.
,
Roennau
,
A.
, and
Dillmann
,
R.
,
2019
, “
Neuromorphic Stereo Vision: A Survey of Bio-Inspired Sensors and Algorithms
,”
Front. Neurorobotics
,
13
, pp.
1
20
.10.3389/fnbot.2019.00028
49.
Francoise-Pele
,
A.
,
2020
, “
Neuromorphic Vision Sensors Eye the Future Autonomy
,” EE Times, accessed Apr. 21, 2020, https://www.eetimes.com/neuromorphic-vision-sensors-eye-the-future-of-autonomy/#
50.
Hu
,
C. C.
,
Chen
,
M. F.
,
Chiou
,
W. C.
, and
Yu
,
D. C. H.
,
2019
, “
3D Multi-Chip Integration With System on Integrated Chips (SoICTM)
,”
2019 Symposium on VLSI Technology
, Digest of Technical Papers, Kyoto, Japan, June 9–14, pp. T2–T3.10.23919/VLSIT.2019.8776486
51.
Chen
,
F. C.
,
Chen
,
M. F.
,
Chiou
,
W. C.
, and
Yu
,
D. C. H.
,
2019
, “
System on Integrated Chips (SoICTM) for 3D Heterogeneous Integration
,” 2019 IEEE 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
594
599
.10.1109/ECTC.2019.00095
52.
Chen
,
Y. H.
,
Yang
,
C. A.
,
Kuo
,
C. C.
,
Chen
,
M. F.
,
Tung
,
C. H.
,
Chiou
,
W. C.
, and
Yu
,
D.
,
2020
, “
Ultra High Density SoIC With Sub-Micron Bond Pitch
,” 2020 IEEE 70th Electronic Components and Technology Conference (
ECTC
), Virtual Conference, May 30–June 3, pp.
576
581
.10.1109/ECTC32862.2020.00096
53.
SONY
,
2019
, “
Sony Develops a Stacked CMOS Image Sensor Technology Using Sony's Proprietary Global Shutter Function With Back-Illuminated Pixel Structure to Deliver Both High Imaging Performance and Miniaturization - Improves Productivity of Industrial Equipment for Smartification
,” News Release, SONY Corp, Mar. 18, 2019.
54.
OmniVision
,
2019
, “
First BSI Global Shutter Sensor With Nyxel® Technology Combines 2.2 Micron Pixel With Superior Near-Infrared Performance for Sharp, Accurate Images in Consumer and Industrial Applications
,” Product Release, OmniVision, Sept. 3,
Santa Clara, CA
.
55.
Wang
,
Z.
,
2015
, “
3-D Integration and Through-Silicon Vias in MEMS and Microsensors
,”
J. Microelectromech. Systems
,
24
(
5
), pp.
1211
1244
.10.1109/JMEMS.2015.2448681
56.
Abbas
,
T. A.
,
Dutton
,
N. A. W.
,
Almer
,
O.
,
Pellegrini
,
S.
,
Henrion
,
Y.
, and
Henderson
,
R. K.
,
2016
, “
Backside Illuminated SPAD Image Sensor With 7.83μm Pitch in 3D-Stacked CMOS Technology
,”
IEEE IEDM 2016
, San Francisco, CA, Oct. 3–7, pp.
196
199
.10.1109/IEDM.2016.7838372
57.
Ximenes
,
A. R.
,
Padmanabhan
,
P.
,
Lee
,
M.
,
Yamashita
,
Y.
,
Yaung
,
D. N.
, and
Charbon
,
E.
,
2018
, “
A 256 × 256 45/65 nm 3D-Stacked SPAD-Based Direct TOF Image Sensor for LiDAR Applications With Optical Polar Modulation for Up to 18.6 dB Interference Suppression
,”
2018 IEEE International Solid-State Circuits Conference
, San Francisco, CA, Feb. 11–15, pp.
96
98
.10.1109/ISSCC.2018.8310201
58.
Ximenes
,
A. R.
,
Padmanabhan
,
P.
,
Lee
,
M.
,
Yamashita
,
Y.
,
Yaung
,
D. N.
, and
Charbon
,
E.
,
2019
, “
A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology
,”
IEEE J. Solid-State Circuits
,
54
(
11
), pp.
3203
3214
.10.1109/JSSC.2019.2938412
59.
Morimoto
,
K.
,
Ardelean
,
A.
,
Wu
,
M.
,
Ulku
,
A. C.
,
Antolovic
,
I. M.
,
Bruschini
,
C.
, and
Charbon
,
E.
,
2020
, “
Megapixel Time-Gated SPAD Image Sensor for 2D and 3D Imaging Applications
,”
Optica
,
7
(
4
), pp.
346
354
.10.1364/OPTICA.386574
60.
Gao
,
G.
,
Workman
,
T.
,
Uzoh
,
C.
,
Bang
,
K.
,
Mirkarimi
,
L.
,
Theil
,
J.
,
Suwito
,
D.
,
Katkar
,
R.
,
Fountain
,
G.
,
Guevara
,
G.
, and
Lee
,
B.
,
2020
, “
Die to Wafer Stacking With Low Temperature Hybrid Bonding
,” 2020 IEEE 70th Electronic Components and Technology Conference (
ECTC
), Virtual Conference, May 30–June 3, pp.
589
594
.10.1109/ECTC32862.2020.00098
61.
Chatterjee
,
A.
, and
Rao
,
K. S. R. K.
,
2018
, “
Bandgap Engineered HgCdTe Nano-Crystal Based Hetero-Junction Infrared Sensor
,”
2018 3rd International Conference on Microwave and Photonics
(
ICMAP 2018
), Dhanbad, India, Feb. 9–11.10.1109/ICMAP.2018.8354471
62.
Omnivision
,
2020
, “
New OmniVision 48MP Image Sensor Provides Unparalleled High Dynamic Range and 4K Video Performance for Flagship Mobile Phones
,” OmniVision product release, Jan. 6, 2020, Santa Clara, CA.
63.
Komuro
,
T.
,
Ishii
,
I.
,
Ishikawa
,
M.
, and
Yoshida
,
A.
,
2003
, “
A Digital Vision Chip Specialized for High-Speed Target Tracking
,”
IEEE Trans. Electron Devices
,
50
(
1
), pp.
191
199
.10.1109/TED.2002.807255
64.
Yang
,
D.
,
Fowler
,
B.
, and
Gamal
,
A. E.
,
1999
, “
A Nyquist Rate Pixel Level ADC for CMOS Image Sensors
,”
IEEE J. Solid-State Circuits
,
34
(
3
), pp.
348
356
.10.1109/4.748186
65.
Andoh
,
F.
,
Shimamoto
,
H.
, and
Fujita
,
Y.
,
2000
, “
A Digital Pixel Image Sensor for Real-Time Readout
,”
IEEE Trans. Electron Devices
,
47
(
11
), pp.
2123
2127
.10.1109/16.877174
66.
Fraux
,
R.
, and
LeRoy
,
S.
, System Plus Consulting, Private Communication in granting reuse of pictures.
67.
Kagawa
,
Y.
,
Fujii
,
N.
,
Aoyagi
,
K.
,
Kobayashi
,
Y.
,
Nishi
,
S.
,
Todaka
,
N.
,
Takeshita
,
S.
,
Taura
,
J.
,
Takahashi
,
H.
,
Nishimura
,
Y.
,
Tatani
,
K.
,
Kawamura
,
M.
,
Nakayama
,
H.
,
Nagano
,
T.
,
Ohno
,
K.
,
Iwamoto
,
H.
,
Kadomura
,
S.
, and
Hirayama
,
T.
,
2016
, “
Novel Stacked CMOS Image Sensor With Advanced Cu2Cu Hybrid Bonding
,”
IEEE IEDM 2016
, San Francisco, CA, Dec 3–7, 2016, pp.
208
211
.10.1109/IEDM.2016.7838375
68.
Venezia
,
V. C.
,
Shih
,
C.
,
Yang
,
W. Z.
,
Zang
,
Y.
,
Lin
,
Z.
,
Grant
,
L. A.
, and
Rhodes
,
H.
,
2017
, “
1.0um Pixel Improvements With Hybrid Bond Stacking Technology
,”
Proceedings of International Image Sensor Workshop
, Hiroshima, Japan, May 30–June 2, R03, pp.
8
11
.https://www.imagesensors.org/Past%20Workshops/2017%20Workshop/2017%20Papers/R03.pdf
69.
SONY
,
2021
, “
Sony to Release Large Format CMOS Image Sensor With Global Shutter Function and Industry's Highest Effective Pixel Count of 127.68 Megapixels
,” News Release, Mar. 9, 2021.
70.
Venezia
,
V. C.
,
Shih
,
C.
,
Yang
,
W. Z.
,
Zhang
,
B.
, and
Rhodes
,
H.
,
2015
, “
Stack Chip Technology: A New Direction for CMOS Imagers
,”
International Image Sensor Workshop
, Vaals, The Netherlands, June
8
11
.http://www.imagesensors.org/Past%20Workshops/2015%20Workshop/2015%20Papers/Sessions/Session_2/2-01_Venezia%20IISW%202015.pdf
71.
Lu
,
M. C.
,
2019
, “
Considerations on Integration of Through Silicon Via With 3D NAND Scaling
,” 2019 IEEE 21st Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 4–6, pp.
6
12
.10.1109/EPTC47984.2019.9026685
72.
Brandstätter
,
B.
,
Aschenwald
,
D.
,
Auer
,
B.
,
Bilewicz
,
N.
,
Boomsma
,
R.
,
Kröll
,
C.
,
Mayr
,
A.
,
Richard
,
R.
,
Neumayr
,
R.
,
Rieser
,
H.
,
Schernthaner
,
M.
,
Selhofer
,
H.
,
Speer
,
F.
,
Unterwaditzer
,
P.
,
Vidéki
,
A.
,
Widauer
,
M.
, and
Widmann
,
T.
, “
High-Speed Ultra-Accurate Direct C2W Bonding
,” 2020 IEEE 70th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 30–June 3, pp.
1943
1949
.10.1109/ECTC32862.2020.00303
73.
Kumagai
,
O.
,
Ohmachi
,
J.
,
Matsumura
,
M.
,
Yagi
,
S.
,
Tayu
,
K.
,
Amagawa
,
K.
,
Matsukawa
,
T.
,
Ozawa
,
O.
,
Hirono
,
Shinozuka
,
Y.
,
Homma
,
R.
,
Mahara
,
K.
,
Ohyama
,
T.
,
Morita
,
Y.
,
Shimada
,
S.
,
Ueno
,
T.
,
Matsumoto
,
A.
,
Otake
,
Y.
,
Wakano
,
T.
, and
Izawa
,
T.
,
2021
, “7.3
A 189 × 600 Back-Illuminated Stacked SPAD Direct Time-of-Flight Depth Sensor for Automotive LiDAR Systems
,”
2021 IEEE International Solid State Circuits Conference
, San Francisco, CA, Feb. 13–22.https://doi.org/10.1109/ISSCC42613.2021.9365961
You do not currently have access to this content.