Abstract

Much effort in the area of electronics thermal management has focused on developing cooling solutions that cater to steady-state operation. However, electronic devices are increasingly being used in applications involving time-varying workloads. These include microprocessors (particularly those used in portable devices), power electronic devices such as insulated gate bipolar transistors (IGBTs), and high-power semiconductor laser diode arrays. Transient thermal management solutions become essential to ensure the performance and reliability of such devices. In this review, emerging transient thermal management requirements are identified, and cooling solutions reported in the literature for such applications are presented with a focus on time scales of thermal response. Transient cooling techniques employing actively controlled two-phase microchannel heat sinks, phase change materials (PCM), heat pipes/vapor chambers, combined PCM-heat pipes/vapor chambers, and flash boiling systems are examined in detail. They are compared in terms of their thermal response times to ascertain their suitability for the thermal management of pulsed workloads associated with microprocessor chips, IGBTs, and high-power laser diode arrays. Thermal design guidelines for the selection of appropriate package level thermal resistance and capacitance combinations are also recommended.

References

1.
Wong
,
P. H.-S.
,
Akarvardar
,
K.
,
Antoniadis
,
D.
,
Bokor
,
J.
,
Hu
,
C.
,
King-Liu
,
T.-J.
,
Mitra
,
S.
,
Plummer
,
J. D.
, and
Salahuddin
,
S.
,
2020
, “
A Density Metric for Semiconductor Technology [Point of View]
,”
Proceedings of the IEEE
,
IEEE
, 108(4), pp.
478
482
.10.1109/JPROC.2020.2981715
2.
Ye
,
P.
,
Ernst
,
T.
, and
Khare
,
M. V.
,
2019
, “The Last Silicon Transistor: Nanosheet Devices Could be the Final Evolutionary Step for Moore's Law,”
IEEE Spectrum
, 56(8), pp.
30
35
.10.1109/MSPEC.2019.8784120
3.
Smoyer
,
J. L.
, and
Norris
,
P. M.
,
2019
, “
Brief Historical Perspective in Thermal Management and the Shift Toward Management at the Nanoscale
,”
Heat Transfer Eng.
,
40
(
3–4
), pp.
269
282
.10.1080/01457632.2018.1426265
4.
Bar-Cohen
,
A.
, and
Wang
,
P.
,
2012
, “
Thermal Management of on-Chip Hot Spot
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051017
.10.1115/1.4005708
5.
Wei
,
T.
,
Oprins
,
H.
,
Cherman
,
V.
,
Beyne
,
E.
, and
Baelmans
,
M.
,
2020
, “
Low-Cost Energy-Efficient on-Chip Hotspot Power Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
10
(
4
), pp.
577
589
.10.1109/TCPMT.2019.2948522
6.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021001
.10.1115/1.4023215
7.
Agarwal
,
G.
,
Kazior
,
T.
,
Kenny
,
T.
, and
Weinstein
,
D.
,
2017
, “
Modeling and Analysis for Thermal Management in Gallium Nitride HEMTs Using Microfluidic Cooling
,”
ASME J. Electron. Packag.
,
139
(
1
), p.
011001
.10.1115/1.4035064
8.
Phillips
,
R. J.
,
1988
, “
Microchannel Heat Sinks
,”
Lincoln Lab. J.
,
1
(
1
), pp.
31
48
.
9.
Zhou
,
F.
,
Joshi
,
S. N.
,
Liu
,
Y.
, and
Dede
,
E. M.
,
2019
, “
Near-Junction Cooling for Next-Generation Power Electronics
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104300
.10.1016/j.icheatmasstransfer.2019.104300
10.
Pecht
,
M.
,
Lall
,
P.
, and
Hakim
,
E. B.
,
1992
, “
The Influence of Temperature on Integrated Circuit Failure Mechanisms
,”
Qual. Reliab. Eng. Int.
,
8
(
3
), pp.
167
176
.10.1002/qre.4680080304
11.
Pecht
,
M.
, and
Gu
,
J.
,
2009
, “
Physics-of-Failure-Based Prognostics for Electronic Products
,”
Trans. Inst. Meas. Control
,
31
(
3–4
), pp.
309
322
.10.1177/0142331208092031
12.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
13.
Prasher
,
R. S.
,
Chang
,
J. Y.
,
Sauciuc
,
I.
,
Narasimhan
,
S.
,
Chau
,
D.
,
Chrysler
,
G.
,
Myers
,
A.
,
Prstic
,
S.
, and
Hu
,
C.
,
2005
, “
Nano and Micro Technology-Based Next-Generation Package-Level Cooling Solutions
,”
Intel Technol. J.
,
9
(
4
), pp.
285
296
.https://www.researchgate.net/publication/277313312_Nano_and_Micro_Technology-Based_Next-Generation_Package-Level_Cooling_Solutions
14.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
15.
KoşAr
,
A.
, and., and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
((
2
), pp.
121
131
.10.1115/1.2137760
16.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
,
2007
, “
High Performance and Subambient Silicon Microchannel Cooling
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1046
1051
.10.1115/1.2724850
17.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1018
1034
.10.1016/j.ijheatmasstransfer.2006.07.032
18.
Zhu
,
Y.
,
Antao
,
D. S.
,
Chu
,
K.-H.
,
Chen
,
S.
,
Hendricks
,
T. J.
,
Zhang
,
T.
, and
Wang
,
E. N.
,
2016
, “
Surface Structure Enhanced Microchannel Flow Boiling
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091501
.10.1115/1.4033497
19.
David
,
M. P.
,
Miler
,
J.
,
Steinbrenner
,
J. E.
,
Yang
,
Y.
,
Touzelbaev
,
M.
, and
Goodson
,
K. E.
,
2011
, “
Hydraulic and Thermal Characteristics of a Vapor Venting Two-Phase Microchannel Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5504
5516
.10.1016/j.ijheatmasstransfer.2011.07.040
20.
Fazeli
,
A.
,
Mortazavi
,
M.
, and
Moghaddam
,
S.
,
2015
, “
Hierarchical Biphilic Micro/Nanostructures for a New Generation Phase-Change Heat Sink
,”
Appl. Therm. Eng.
,
78
, pp.
380
386
.10.1016/j.applthermaleng.2014.12.073
21.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
.10.1115/1.4023574
22.
Green
,
C.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
,
2009
, “
Fluid-to-Fluid Spot-to-Spreader (F2/S2) Hybrid Heat Sink for Integrated Chip-Level and Hot Spot-Level Thermal Management
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
025002
.10.1115/1.3104029
23.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
117
, pp.
319
330
.10.1016/j.ijheatmasstransfer.2017.10.015
24.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.10.1115/1.2759969
25.
Mahamudur Rahman
,
M.
,
Pollack
,
J.
, and
Mccarthy
,
M.
,
2015
, “
Increasing Boiling Heat Transfer Using Low Conductivity Materials
,”
Sci. Rep.
,
5
, p.
13145
.10.1038/srep13145
26.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels
,”
Appl. Phys. Lett.
,
108
(
4
), p.
041604
.10.1063/1.4941032
27.
Rama Raju
,
V. S. V.
, and
Krishnan
,
S.
,
2020
, “
Experimental Investigation of Two-Phase Pumpless Loop With Aqueous Anionic Surfactant as Working Fluid
,”
Int. J. Therm. Sci.
,
154
, p.
106400
.10.1016/j.ijthermalsci.2020.106400
28.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2012
, “
Experimental Investigation of Flow Boiling Heat Transfer of Jet Impingement on Smooth and Micro Structured Surfaces
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5093
5101
.10.1016/j.ijheatmasstransfer.2012.05.009
29.
Rau
,
M. J.
,
Garimella
,
S. V.
,
Dede
,
E. M.
, and
Joshi
,
S. N.
,
2015
, “
Boiling Heat Transfer From an Array of Round Jets With Hybrid Surface Enhancements
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071501
.10.1115/1.4029969
30.
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2017
, “
Two-Phase Jet Impingement Cooling for High Heat Flux Wide Band-Gap Devices Using Multi-Scale Porous Surfaces
,”
Appl. Therm. Eng.
,
110
, pp.
10
17
.10.1016/j.applthermaleng.2016.08.146
31.
Wu
,
R.
,
Fan
,
Y.
,
Hong
,
T.
,
Zou
,
H.
,
Hu
,
R.
, and
Luo
,
X.
,
2019
, “
An Immersed Jet Array Impingement Cooling Device With Distributed Returns for Direct Body Liquid Cooling of High Power Electronics
,”
Appl. Therm. Eng.
,
162
, p.
114259
.10.1016/j.applthermaleng.2019.114259
32.
Palko
,
J. W.
,
Lee
,
H.
,
Zhang
,
C.
,
Dusseault
,
T. J.
,
Maitra
,
T.
,
Won
,
Y.
,
Agonafer
,
D. D.
,
Moss
,
J.
,
Houshmand
,
F.
,
Rong
,
G.
,
Wilbur
,
J. D.
,
Rockosi
,
D.
,
Mykyta
,
I.
,
Resler
,
D.
,
Altman
,
D.
,
Asheghi
,
M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2017
, “
Extreme Two-Phase Cooling From Laser-Etched Diamond and Conformal, Template-Fabricated Microporous Copper
,”
Adv. Funct. Mater.
,
27
(
45
), p.
1703265
.10.1002/adfm.201703265
33.
Pautsch
,
A. G.
, and
Shedd
,
T. A.
,
2005
, “
Spray Impingement Cooling With Single- and Multiple-Nozzle Arrays. Part I: Heat Transfer Data Using FC-72
,”
Int. J. Heat Mass Transfer
,
48
(
15
), pp.
3167
3175
.10.1016/j.ijheatmasstransfer.2005.02.012
34.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V. K.
,
2005
, “
A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
38
48
.10.1115/1.1804205
35.
Mudawar
,
I.
,
Bharathan
,
D.
,
Kelly
,
K.
, and
Narumanchi
,
S.
,
2009
, “
Two-Phase Spray Cooling of Hybrid Vehicle Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
501
512
.10.1109/TCAPT.2008.2006907
36.
Tan
,
Y. B.
,
Xie
,
J. L.
,
Duan
,
F.
,
Wong
,
T. N.
,
Toh
,
K. C.
,
Choo
,
K. F.
,
Chan
,
P. K.
, and
Chua
,
Y. S.
,
2013
, “
Multi-Nozzle Spray Cooling for High Heat Flux Applications in a Closed Loop System
,”
Appl. Therm. Eng.
,
54
(
2
), pp.
372
379
.10.1016/j.applthermaleng.2013.01.033
37.
Zhou
,
Z. F.
,
Lin
,
Y. K.
,
Tang
,
H. L.
,
Fang
,
Y.
,
Chen
,
B.
, and
Wang
,
Y. C.
,
2019
, “
Heat Transfer Enhancement Due to Surface Modification in the Close-Loop R410A Flash Evaporation Spray Cooling
,”
Int. J. Heat Mass Transfer
,
139
, pp.
1047
1055
.10.1016/j.ijheatmasstransfer.2019.05.063
38.
Green
,
C.
,
Kottke
,
P.
,
Han
,
X.
,
Woodrum
,
C.
,
Sarvey
,
T.
,
Asrar
,
P.
,
Zhang
,
X.
,
Joshi
,
Y.
,
Fedorov
,
A.
,
Sitaraman
,
S.
, and
Bakir
,
M.
,
2015
, “
A Review of Two-Phase Forced Cooling in Three-Dimensional Stacked Electronics: Technology Integration
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040802
.10.1115/1.4031481
39.
Amon
,
C. H.
,
Yao
,
S. C.
,
Wu
,
C. F.
, and
Hsieh
,
C. C.
,
2005
, “
Microelectromechanical System-Based Evaporative Thermal Management of High Heat Flux Electronics
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
66
75
.10.1115/1.1839586
40.
Dargie
,
W.
,
2015
, “
A Stochastic Model for Estimating the Power Consumption of a Processor
,”
IEEE Trans. Comput.
,
64
(
5
), pp.
1311
1322
.10.1109/TC.2014.2315629
41.
Louis Columbus
,
2013
, “
IDC: 87% of Connected Devices Sales by 2017 Will Be Tablets and Smartphones
,” Forbes, Jersey City, NJ, accessed May 13, 2020, https://www.forbes.com/sites/louiscolumbus/2013/09/12/idc-87-of-connected-devices-by-2017-will-be-tablets-and-smartphones/#41c290e76a00%0A
42.
Cisco
,
2020
, “
Cisco Annual Internet Report (2018–2023)
,” Cisco, San Jose, CA, accessed May 13, 2020, https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490. html
43.
Fok
,
S. C.
,
Shen
,
W.
, and
Tan
,
F. L.
,
2010
, “
Cooling of Portable Hand-Held Electronic Devices Using Phase Change Materials in Finned Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
109
117
.10.1016/j.ijthermalsci.2009.06.011
44.
Patankar
,
G.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2019
, “
On the Transient Thermal Response of Thin Vapor Chamber Heat Spreaders: Governing Mechanisms and Performance Relative to Metal Spreaders
,”
Int. J. Heat Mass Transfer
,
136
, pp.
995
1005
.10.1016/j.ijheatmasstransfer.2019.03.058
45.
Shao
,
L.
,
Raghavan
,
A.
,
Kim
,
G. H.
,
Emurian
,
L.
,
Rosen
,
J.
,
Papaefthymiou
,
M. C.
,
Wenisch
,
T. F.
,
Martin
,
M. M. K.
, and
Pipe
,
K. P.
,
2016
, “
Figure-of-Merit for Phase-Change Materials Used in Thermal Management
,”
Int. J. Heat Mass Transfer
,
101
, pp.
764
771
.10.1016/j.ijheatmasstransfer.2016.05.040
46.
Schlenker
,
E. L.
,
2018
, “
Modeling and Characterization of High-Power Electronic Devices: System Analysis of Laser Diodes With Flash Boiling and GAN HEMT Reliability Modeling
,”
M.S. thesis
,
Purdue University
, West Lafayette, IN.https://docs.lib.purdue.edu/dissertations/AAI10823098/
47.
Meysenc
,
L.
,
Jylhäkallio
,
M.
, and
Barbosa
,
P.
,
2005
, “
Power Electronics Cooling Effectiveness Versus Thermal Inertia
,”
IEEE Trans. Power Electron.
,
20
(
3
), pp.
687
693
.10.1109/TPEL.2005.846548
48.
Jankowski
,
N. R.
, and
McCluskey
,
F. P.
,
2009
, “
Modeling Transient Thermal Response of Pulsed Power Electronic Packages
,”
IEEE Pulsed Power Conference
,
Washington, DC, June 28–July 2, pp.
820
825
.10.1109/PPC.2009.5386368
49.
Raghavan
,
A.
,
2013
, “
Computational Sprinting : Exceeding Sustainable Power in Thermally Constrained Systems
,”
Ph.D. thesis
,
University of Pennsylvania, Philadelphia, PA
.https://www.researchgate.net/publication/304018974_Computational_Sprinting_Exceeding_Sustainable_Power_in_Thermally_Constrained_Systems
50.
Cao
,
L. P.
,
Krusius
,
J. P.
,
Fisher
,
T. S.
, and
Avedisian
,
C. T.
,
1995
, “
Transient Energy Management Strategies for Portable Systems
,”
Proceedings 45th Electronic Components and Technology Conference
, Las Vegas, NV, May 21–24, pp.
1161
1165
.10.1109/ECTC.1995.517837
51.
Intel
, 2020, “
Higher Performance When You Need It Most
,” Intel, Santa Clara, CA, accessed June 4,
2020
, https://www.intel.in/content/www/in/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
52.
AMD
, 2020, “
Performance When You Need It
,” AMD, accessed June 4,
2020
, https://www.amd.com/en/technologies/turbo-core
53.
Raghavan
,
A.
,
Luo
,
Y.
,
Chandawalla
,
A.
,
Papaefthymiou
,
M.
,
Pipe
,
K. P.
,
Wenisch
,
T. F.
, and
Martin
,
M. M.
,
2013
, “
Designing for Responsiveness With Computational Sprinting
,”
IEEE Micro
,
33
(
3
), pp.
8
15
.10.1109/MM.2013.51
54.
Rotem
,
E.
,
Ginosar
,
R.
,
Mendelson
,
A.
, and
Weiser
,
U. C.
,
2015
, “
Power and Thermal Constraints of Modern System-on-a-Chip Computer
,”
Microelectron. J.
,
46
(
12
), pp.
1225
1229
.10.1016/j.mejo.2015.09.002
55.
Sahin
,
O.
,
Thiele
,
L.
, and
Coskun
,
A. K.
,
2019
, “
Maestro: Autonomous QoS Management for Mobile Applications Under Thermal Constraints
,”
IEEE Trans. Comput. Des. Integr. Circuits Syst.
,
38
(
8
), pp.
1557
1570
.10.1109/TCAD.2018.2855180
56.
Qian
,
C.
,
Gheitaghy
,
A. M.
,
Fan
,
J.
,
Tang
,
H.
,
Sun
,
B.
,
Ye
,
H.
, and
Zhang
,
G.
,
2018
, “
Thermal Management on IGBT Power Electronic Devices and Modules
,”
IEEE Access
,
6
, pp.
12868
12884
.10.1109/ACCESS.2018.2793300
57.
Wintrich
,
A.
,
Ulrich
,
N.
,
Werner
,
T.
, and
Reimann
,
T.
,
2015
,
Application Manual Power Semiconductors
,
ISLE Verlag, 2nd revised edition, SEMIKRON International GmbH, Germany
.
58.
Murdock
,
D. A.
,
Torres
,
J. E. R.
,
Connors
,
J. J.
, and
Lorenz
,
R. D.
,
2006
, “
Active Thermal Control of Power Electronic Modules
,”
IEEE Trans. Ind. Appl.
,
42
(
2
), pp.
552
558
.10.1109/TIA.2005.863905
59.
Fuji Electric
, 2020, “
IGBT Module Selection and Application
,” Fuji Electric, Shinagawa City, Tokyo, Japan, accessed June 12,
2020
, https://www.fujielectric.com/products/semiconductor/model/igbt/application/box/doc/pdf/RH984b/ REH984b_03a.pdf
60.
Held
,
M.
,
Jacob
,
P.
,
Nicoletti
,
G.
,
Scacco
,
P.
, and
Poech
,
M. H.
,
1999
, “
Fast Power Cycling Test for Insulated Gate Bipolar Transistor Modules in Traction Application
,”
Int. J. Electron.
,
86
(
10
), pp.
1193
1204
.10.1080/002072199132743
61.
Andresen
,
M.
, and
Liserre
,
M.
,
2014
, “
Impact of Active Thermal Management on Power Electronics Design
,”
Microelectron. Reliab.
,
54
(
9–10
), pp.
1935
1939
.10.1016/j.microrel.2014.07.069
62.
Mandrusiak
,
G.
,
She
,
X.
,
Waddell
,
A. M.
, and
Acharya
,
S.
,
2018
, “
On the Transient Thermal Characteristics of Silicon Carbide Power Electronics Modules
,”
IEEE Trans. Power Electron.
,
33
(
11
), pp.
9783
9789
.10.1109/TPEL.2018.2794919
63.
Lorenzen
,
D.
,
Bonhaus
,
J.
,
Fahrner
,
W. R.
,
Member
,
S.
,
Kaulfersch
,
E.
,
Wörner
,
E.
,
Koidl
,
P.
,
Unger
,
K.
,
Müller
,
D.
,
Rölke
,
S.
,
Schmidt
,
H.
, and
Grellmann
,
M.
,
2001
, “
Micro Thermal Management of High-Power Diode Laser Bars
,”
IEEE Trans. Ind. Electron.
,
48
(
2
), pp.
286
297
.10.1109/41.915407
64.
Bevis
,
T. A.
,
2016
, “
High Heat Flux Phase Change Thermal Management of Laser Diode Arrays
,”
M.S. thesis
,
Colorado State University, Fort Collins, CO
.https://mountainscholar.org/bitstream/handle/10217/173451/Bevis_colostate_0053N_13418.pdf?sequence=1
65.
Yuan
,
Z.
,
Wang
,
J.
,
Wu
,
D.
,
Chen
,
X.
, and
Liu
,
X.
,
2009
, “
Study of Steady and Transient Thermal Behavior of High Power Semiconductor Lasers
,”
IEEE 59th Electronic Components and Technology Conference
, San Diego, CA, May 26–29, pp.
831
836
.10.1109/ECTC.2009.5074108
66.
Carter
,
J.
,
Snyder
,
D.
, and
Reichenbaugh
,
J.
,
2003
, “
Transient Thermal Modeling of High-Power Pulsed Laser Diode Arrays
,”
19th IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 11–13, pp.
276
283
.10.1109/STHERM.2003.1194374
67.
Engerer
,
J. D.
,
2016
, “
Rapid Transient Cooling Utilizing Flash Boiling and Desorption on Graphitic Foams
,”
Ph.D thesis
,
Purdue University, West Lafayette, IN
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2685&context=open_access_dissertations
68.
Mundinger
,
D.
,
Beach
,
R.
,
Benett
,
W.
,
Solarz
,
R.
,
Krupke
,
W.
,
Staver
,
R.
, and
Tuckerman
,
D.
,
1988
, “
Demonstration of High-Performance Silicon Microchannel Heat Exchangers for Laser Diode Array Cooling
,”
Appl. Phys. Lett.
,
53
(
12
), pp.
1030
1032
.10.1063/1.100055
69.
Skidmore
,
J. A.
,
Freitas
,
B. L.
,
Crawford
,
J.
,
Satariano
,
J.
,
Utterback
,
E.
,
DiMercurio
,
L.
,
Cutter
,
K.
, and
Sutton
,
S.
,
2000
, “
Silicon Monolithic Microchannel-Cooled Laser Diode Array
,”
Appl. Phys. Lett.
,
77
(
1
), pp.
10
–1
4
.10.1063/1.126860
70.
Goodson
,
K. E.
,
Kurabayashi
,
K.
, and
Pease
,
R. F. W.
,
1997
, “
Improved Heat Sinking for Laser-Diode Arrays Using Microchannels in CVD Diamond
,”
IEEE Trans. Compon., Packaging, Manuf. Technol.
,
20
(
1
), pp.
104
109
.10.1109/96.554536
71.
Murata
,
S.
,
Nakada
,
H.
,
Abe
,
T.
,
Tanaka
,
H.
, and
Watabe
,
A.
,
1993
, “
Newly Packaged 50-Μm-Spaced 8-Element Laser Diode Array With a Thermoelectric Cooler
,”
Jpn. J. Appl. Phys.
,
32
(
Part 1, No. 11B
), pp.
5284
5291
.10.1143/JJAP.32.5284
72.
Wölz
,
M.
,
Spiess
,
C.
,
Vetterlein
,
J.
, and
Meusel
,
J.
,
2019
, “
Thermal Modelling of Laser Diode Packages
,”
Compon. Packag. Laser Syst.
,
10899
, p.
1089905
.10.1117/12.2509579
73.
Pais
,
M. R.
,
Chang
,
M. J.
,
Morgan
,
M. J.
, and
Chow
,
L. C.
,
1994
, “
Spray Cooling of a High Power Laser Diode
,”
SAE Technical Paper No. 941183.
74.
Huddle
,
J. J.
,
Chow
,
L. C.
,
Lei
,
S.
,
Marcos
,
A.
,
Rini
,
D. P.
,
Lindauer
,
S. J.
,
Bass
,
M.
, and
Delfyett
,
P. J.
,
2000
, “
Thermal Management of Diode Laser Arrays
,”
Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 23, pp.
154
160
.10.1109/STHERM.2000.837078
75.
Oh
,
C. H.
,
Lienhard
,
V., J. H.
,
Younis
,
H. F.
,
Dahbura
,
R. S.
, and
Michels
,
D.
,
1998
, “
Liquid Jet-Array Cooling Modules for High Heat Fluxes
,”
AIChE J.
,
44
(
4
), pp.
769
779
.10.1002/aic.690440402
76.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.10.1115/1.1839587
77.
Zhang
,
T. J.
,
Wen
,
J. T.
,
Peles
,
Y.
,
Catano
,
J.
,
Zhou
,
R.
, and
Jensen
,
M. K.
,
2011
, “
Two-Phase Refrigerant Flow Instability Analysis and Active Control in Transient Electronics Cooling Systems
,”
Int. J. Multiphase Flow
,
37
(
1
), pp.
84
97
.10.1016/j.ijmultiphaseflow.2010.07.003
78.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.10.1115/1.2908431
79.
Hu
,
Y.
,
Zhang
,
S.
,
Li
,
X.
, and
Wang
,
S.
,
2014
, “
Heat Transfer Enhancement Mechanism of Pool Boiling With Self-Rewetting Fluid
,”
Int. J. Heat Mass Transfer
,
79
, pp.
309
313
.10.1016/j.ijheatmasstransfer.2014.08.028
80.
Bhagat
,
A.
,
Ghaisas
,
G.
,
Mathew
,
J.
, and
Krishnan
,
S.
,
2021
, “
Control of Boiling Instabilities in a Two-Phase Pumpless Loop Using Water-Alcohol Mixtures
,”
ASME J. Therm. Sci. Eng. Appl.,
ePub.10.1115/1.4049755
81.
Bhide
,
R. R.
,
Singh
,
S. G.
,
Sridharan
,
A.
, and
Agrawal
,
A.
,
2011
, “
An Active Control Strategy for Reduction of Pressure Instabilities During Flow Boiling in a Microchannel
,”
J. Micromech. Microeng.
,
21
(
3
), p.
035021
.10.1088/0960-1317/21/3/035021
82.
Zalba
,
B.
,
Marı́n
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
((
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
83.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustaintainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
84.
Vesligaj
,
M. J.
, and
Amon
,
C. H.
,
1999
, “
Transient Thermal Management of Temperature Fluctuations During Time Varying Workloads on Portable Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
22
(
4
), pp.
541
550
.10.1109/6144.814970
85.
Hodes
,
M.
,
Weinstein
,
R. D.
,
Pence
,
S. J.
,
Piccini
,
J. M.
,
Manzione
,
L.
, and
Chen
,
C.
,
2002
, “
Transient Thermal Management of a Handset Using Phase Change Material (PCM)
,”
ASME J. Electron. Packag.
,
124
(
4
), pp.
419
426
.10.1115/1.1523061
86.
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2004
, “
Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
1
), pp.
191
199
.10.1109/TCAPT.2004.825758
87.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Kang
,
S. S.
,
2005
, “
A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management f Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
281
289
.10.1109/TCAPT.2005.848534
88.
Fleischer
,
A. S.
,
Chintakrinda
,
K.
,
Weinstein
,
R.
, and
Bessel
,
C. A.
,
2008
, “
Transient Thermal Management Using Phase Change Materials With Embedded Graphite Nanofibers for Systems With High Power Requirements
,”
11th IEEE Intersociety Conference Thermal Thermomechanical Phenomena in Electronic System I-THERM
, Orlando, FL, May 28–31, pp.
561
566
.10.1109/ITHERM.2008.4544317
89.
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Thermal Performance of a PCM Heat Sink Under Different Heat Loads: An Experimental Study
,”
Int. J. Therm. Sci.
,
79
, pp.
240
249
.10.1016/j.ijthermalsci.2013.12.018
90.
Kandasamy
,
R.
,
Wang
,
X.
, and
Mujumdar
,
A. S.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1047
1057
.10.1016/j.applthermaleng.2007.06.010
91.
Jaworski
,
M.
,
2012
, “
Thermal Performance of Heat Spreader for Electronics Cooling With Incorporated Phase Change Material
,”
Appl. Therm. Eng.
,
35
(
1
), pp.
212
219
.10.1016/j.applthermaleng.2011.10.036
92.
Yoo
,
D. W.
, and
Joshi
,
Y. K.
,
2004
, “
Energy Efficient Thermal Management of Electronic Components Using Solid Liquid Phase Change Materials
,”
IEEE Transactions on Device and Materials Reliability
, 4(4), pp.
641
649
.10.1109/TDMR.2004.840854
93.
Yang
,
X.
,
Tan
,
S.
,
He
,
Z.
,
Zhou
,
Y.
, and
Liu
,
J.
,
2017
, “
Evaluation and Optimization of Low Melting Point Metal PCM Heat Sink Against Ultra-High Thermal Shock
,”
Appl. Therm. Eng.
,
119
, pp.
34
41
.10.1016/j.applthermaleng.2017.03.050
94.
Shamberger
,
P. J.
, and
Bruno
,
N. M.
,
2020
, “
Review of Metallic Phase Change Materials for High Heat Flux Transient Thermal Management Applications
,”
Appl. Energy
,
258
(
September 2019
), p.
113955
.10.1016/j.apenergy.2019.113955
95.
Shamberger
,
P. J.
,
2016
, “
Cooling Capacity Figure of Merit for Phase Change Materials
,”
ASME J. Heat Transfer
,
138
(
2
), p. 024502.10.1115/1.4031252
96.
Boteler
,
L.
,
Fish
,
M.
,
Berman
,
M.
, and
Wang
,
J.
,
2019
, “
Understanding Trade-Offs of Phase Change Materials for Transient Thermal Mitigation
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Las Vegas, NV, May 28–31, pp. 870–877
.10.1109/ITHERM.2019.8757253
97.
Faghri
,
A.
,
2012
, “
Review and Advances in Heat Pipe Science and Technology
,”
ASME J. Heat Transfer
,
134
(
12
), p.
123001
.10.1115/1.4007407
98.
Bulut
,
M.
,
Kandlikar
,
S. G.
, and
Sozbir
,
N.
,
2019
, “
A Review of Vapor Chambers
,”
Heat Transfer Eng.
,
40
(
19
), pp.
1551
1573
.10.1080/01457632.2018.1480868
99.
Shabgard
,
H.
,
Allen
,
M. J.
,
Sharifi
,
N.
,
Benn
,
S. P.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2015
, “
Heat Pipe Heat Exchangers and Heat Sinks: Opportunities, Challenges, Applications, Analysis, and State of the Art
,”
Int. J. Heat Mass Transfer
,
89
, pp.
138
158
.10.1016/j.ijheatmasstransfer.2015.05.020
100.
Tang
,
H.
,
Tang
,
Y.
,
Wan
,
Z.
,
Li
,
J.
,
Yuan
,
W.
,
Lu
,
L.
,
Li
,
Y.
, and
Tang
,
K.
,
2018
, “
Review of Applications and Developments of Ultra-Thin Micro Heat Pipes for Electronic Cooling
,”
Appl. Energy
,
223
, pp.
383
400
.10.1016/j.apenergy.2018.04.072
101.
Ahamed
,
M. S.
,
Saito
,
Y.
,
Mashiko
,
K.
, and
Mochizuki
,
M.
,
2017
, “
Characterization of a High Performance Ultra-Thin Heat Pipe Cooling Module for Mobile Hand Held Electronic Devices
,”
Heat Mass Transfer
,
53
(
11
), pp.
3241
3247
.10.1007/s00231-017-2022-7
102.
Zhou
,
G.
,
Li
,
J.
,
Lv
,
L.
, and
Peterson
,
G. P.
,
2017
, “
Comparative Study on Thermal Performance of Ultrathin Miniature Loop Heat Pipes With Different Internal Wicks
,”
ASME J. Heat Transfer
,
139
(
12
), p.
122004
.10.1115/1.4036982
103.
Patankar
,
G.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2020
, “
On the Transient Thermal Response of Thin Vapor Chamber Heat Spreaders: Optimized Design and Fluid Selection
,”
Int. J. Heat Mass Transfer
,
148
, p.
119106
.10.1016/j.ijheatmasstransfer.2019.119106
104.
Baraya
,
K.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2020
, “
Heat Pipe Dryout and Temperature Hysteresis in Response to Transient Heat Pulses Exceeding the Capillary Limit
,”
Int. J. Heat Mass Transfer
,
148
, p.
119135
.10.1016/j.ijheatmasstransfer.2019.119135
105.
Harmand
,
S.
,
Sonan
,
R.
,
Fakès
,
M.
, and
Hassan
,
H.
,
2011
, “
Transient Cooling of Electronic Components by Flat Heat Pipes
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1877
1885
.10.1016/j.applthermaleng.2011.02.034
106.
Hassan
,
H.
, and
Harmand
,
S.
,
2015
, “
Study of the Parameters and Characteristics of Flat Heat Pipe With Nanofluids Subjected to Periodic Heat Load on Its Performance
,”
Int. J. Therm. Sci.
,
97
, pp.
126
142
.10.1016/j.ijthermalsci.2015.06.009
107.
Wang
,
Y.
, and
Vafai
,
K.
,
2000
, “
An Experimental Investigation of the Transient Characteristics on a Flat-Plate Heat Pipe During Startup and Shutdown Operations
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
525
535
.10.1115/1.1287725
108.
Cleary
,
M.
,
North
,
M. T.
,
Van Lieshout
,
M.
,
Brooks
,
D. A.
,
Grimes
,
R.
, and
Hodes
,
M.
,
2013
, “
Reduced Power Precision Temperature Control Using Variable Conductance Heat Pipes
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
12
), pp.
2048
2058
.10.1109/TCPMT.2013.2270286
109.
Liu
,
T.
,
Palko
,
J. W.
,
Katz
,
J. S.
,
Dede
,
E. M.
,
Zhou
,
F.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2019
, “
Tunable, Passive Thermal Regulation Through Liquid to Vapor Phase Change Tunable, Passive Thermal Regulation Through Liquid to Vapor Phase Change
,”
Appl. Phys. Lett.
,
115
(
25
), p.
254102
.10.1063/1.5133795
110.
Zhou
,
F.
,
Liu
,
Y.
,
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2017
, “
Vapor Chamber With Thermal Diode and Switch Functions
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
521
528
.10.1109/ITHERM.2017.7992518
111.
Yang
,
T.
,
Foulkes
,
T.
,
Kwon
,
B.
,
Kang
,
J. G.
,
Braun
,
P. V.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2019
, “
An Integrated Liquid Metal Thermal Switch for Active Thermal Management of Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
9
(
12
), pp.
2341
2351
.10.1109/TCPMT.2019.2930089
112.
Li
,
Z. W.
,
Lv
,
L. C.
, and
Li
,
J.
,
2016
, “
Combination of Heat Storage and Thermal Spreading for High Power Portable Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
98
, pp.
550
557
.10.1016/j.ijheatmasstransfer.2016.03.068
113.
Weng
,
Y. C.
,
Cho
,
H. P.
,
Chang
,
C. C.
, and
Chen
,
S. L.
,
2011
, “
Heat Pipe With PCM for Electronic Cooling
,”
Appl. Energy
,
88
(
5
), pp.
1825
1833
.10.1016/j.apenergy.2010.12.004
114.
Zhuang
,
B.
,
Deng
,
W.
,
Tang
,
Y.
,
Ding
,
X.
,
Chen
,
K.
,
Zhong
,
G.
,
Yuan
,
W.
, and
Li
,
Z.
,
2019
, “
Experimental Investigation on a Novel Composite Heat Pipe With Phase Change Materials Coated on the Adiabatic Section
,”
Int. Commun. Heat Mass Transfer
,
100
, pp.
42
50
.10.1016/j.icheatmasstransfer.2018.12.006
115.
Behi
,
H.
,
Ghanbarpour
,
M.
, and
Behi
,
M.
,
2017
, “
Investigation of PCM-Assisted Heat Pipe for Electronic Cooling
,”
Appl. Therm. Eng.
,
127
, pp.
1132
1142
.10.1016/j.applthermaleng.2017.08.109
116.
Yang
,
X. H.
,
Tan
,
S. C.
,
He
,
Z. Z.
, and
Liu
,
J.
,
2018
, “
Finned Heat Pipe Assisted Low Melting Point Metal PCM Heat Sink Against Extremely High Power Thermal Shock
,”
Energy Convers. Manag.
,
160
, pp.
467
476
.10.1016/j.enconman.2018.01.056
117.
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Enhancement of Latent Heat Energy Storage Using Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3476
3484
.10.1016/j.ijheatmasstransfer.2011.03.038
118.
Yun
,
J.
,
Tarau
,
C.
, and
Van Velson
,
N.
,
2016
, “
Status of the Development of a Vapor Chamber With Phase Change Material-Based Wick Structure
,”
46th International Conference on Environmental Systems
, Vienna, Austria, July 10–14, pp.
1
9
.
119.
Lee
,
K.
,
Tarau
,
C.
, and
Velson
,
N. V.
,
2017
, “
Development of a Heat Exchanger With Integrated Thermal Storage for Spacecraft Thermal Management Applications
,”
47th International Conference on Environmental Systems
, Charleston, SC, July 16–20, pp.
1
11
.https://www.researchgate.net/publication/318679953_Development_of_a_Heat_Exchanger_with_Integrated_Thermal_Storage_for_Spacecraft_Thermal_Management_Applications
120.
Kota
,
K.
,
2008
, “
Design and Experimental Study of an Integrated Vapor Chamber—Thermal Energy Storage System
,”
Ph.D. thesis
,
University of Central Florida, Orlando, FL
.https://ui.adsabs.harvard.edu/abs/2008PhDT.......179K/abstract
121.
Hill
,
L. G.
,
1990
, “
An Experimental Study of Evaporation Waves in a Superheated Liquid
,”
Ph.D. thesis
,
California Institute of Technology, Pasadena, CA
.10.1007/978-3-642-83587-2_3
122.
Reinke
,
P.
, and
Yadigaroglu
,
G.
,
2001
, “
Explosive Vaporization of Superheated Liquids by Boiling Fronts
,”
Int. J. Multiphase Flow
,
27
(
9
), pp.
1487
1516
.10.1016/S0301-9322(01)00023-4
123.
Reinke
,
P.
,
1997
, “
Surface Boiling of Superheated Liquid
,”
Ph.D. thesis
,
ETH Zürich
, Zürich, Switzerland.https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/030/28030620.pdf
124.
Barbone
,
R.
,
1994
, “
Explosive Boiling of a Depressurized Volatile Liquid
,”
M.S. thesis
,
McGill University, Montreal, QC, Canada
.10.1007/978-94-011-0057-1_26
125.
Sher
,
E.
,
Bar-Kohany
,
T.
, and
Rashkovan
,
A.
,
2008
, “
Flash-Boiling Atomization
,”
Prog. Energy Combust. Sci.
,
34
(
4
), pp.
417
439
.10.1016/j.pecs.2007.05.001
126.
Grana-Otero
,
J.
, and
Parra
,
I. E.
,
2010
, “
Far From Equilibrium Boiling
,”
arXiv:1010.3227
,
4
(
1974
), p.
2007
.https://www.semanticscholar.org/paper/Far-from-equilibrium-boiling-Gra%C3%B1a-Otero-Parra/11c13ea17141b51b957b9755c50e250b2757c61b
127.
Avedisian
,
C. T.
,
Skyllingstad
,
K.
,
Cavicchi
,
R. C.
,
Lippe
,
C.
, and
Carrier
,
M. J.
,
2018
, “
Initiation of Flash Boiling of Multicomponent Miscible Mixtures With Application to Transportation Fuels and Their Surrogates
,”
Energy Fuels
,
32
(
9
), pp.
9971
9981
.10.1021/acs.energyfuels.8b02258
128.
Engerer
,
J. D.
,
Jackson
,
G. R.
,
Paul
,
R.
, and
Fisher
,
T. S.
,
2013
, “
Flash Boiling and Desorption From a Macroporous Carbon-Boron-Nitrogen Foam
,”
ASME
Paper No. IMECE2013-64884.10.1115/IMECE2013-64884
129.
Engerer
,
J. D.
,
Doty
,
J. H.
, and
Fisher
,
T. S.
,
2018
, “
Transient Thermal Analysis of Flash-Boiling Cooling in the Presence of High-Heat-Flux Loads
,”
Int. J. Heat Mass Transfer
,
123
, pp.
678
692
.10.1016/j.ijheatmasstransfer.2018.02.109
130.
Shah
,
U.
,
Mogera
,
U.
,
Ambhore
,
P.
,
Vaisband
,
B.
,
Iyer
,
S. S.
, and
Fisher
,
T. S.
,
2019
, “
Dynamic Thermal Management of Silicon Interconnect Fabric Using Flash Cooling
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
1228
1233
.10.1109/ITHERM.2019.8757286
131.
Wagner
,
G.
, and
Maltz
,
W.
,
2013
, “
Thermal Management Challenges in the Passive Cooling of Handheld Devices
,” 19th International Workshop on Thermal Investigations of ICs System (
THERMINIC
), Berlin, Germany, Sept. 25–27, pp.
344
347
.10.1109/THERMINIC.2013.6675246
132.
Li
,
Q.
,
Han
,
A.
,
Yang
,
G.
,
Hong
,
Y.
,
Zhang
,
Z.
,
Jin
,
L.
, and
Yang
,
J.
,
2017
, “
Technical Challenges and Novel Passive Cooling Technologies for Ultra-Thin Notebooks
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System (
ITherm
), Orlando, FL, May 30–June 2, pp.
1069
1074
.10.1109/ITHERM.2017.7992607
You do not currently have access to this content.