Abstract

Saturated water at one-atmosphere pressure was boiled on horizontal flat copper disks of diameters 1.0, 1.5, and 2.0 cm, respectively. The contact angle was varied from about 10 to 80 deg by controlling thermal oxidation of the disks, while the surrounding vessel size was changed by placing glass tubes of different inner diameters around the disks. Nucleate boiling heat transfer data were obtained up to critical heat flux (CHF), where vapor removal pattern was photographed. Vapor jet diameter and the dominant wavelength at water–steam interface were measured from the photographs for the well wetted disks. For well wetted surfaces, the magnitude of CHF increased when the heater size was reduced from 2.0 to 1.0 cm. Improving the wettability enhanced the CHF substantially, whereas the increased size of the liquid-holding vessel had a smaller effect. The highest measured CHF is 233 W/cm2 or 2.11 times Zuber's CHF prediction for infinite horizontal flat plates. It was obtained on a 1.0-cm-diameter disk of contact angle about 10 deg surrounded by a large vessel. The CHF for this surface was increased from 203 to 233 W/cm2 when the ratio of heater size to surrounding vessel size was decreased from 1 to about 0.

References

1.
Karayiannis
,
T.
, and
Mahmoud
,
M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
2.
Bar-Cohen
,
A.
, and
Wang
,
P.
,
2012
, “
Thermal Management of On-Chip Hot Spot
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051017
.10.1115/1.4005708
3.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packaging
,
135
(
2
), p.
021001
.10.1115/1.4023215
4.
Estes
,
K.
, and
Mudawar
,
I.
,
1995
, “
Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays
,”
ASME J. Electron. Packaging
,
117
(
4
), pp.
323
332
.10.1115/1.2792112
5.
Visaria
,
M.
, and
Mudawar
,
I.
,
2008
, “
Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2398
2410
.10.1016/j.ijheatmasstransfer.2007.08.010
6.
Mudawar
,
I.
,
2013
, “
Recent Advances in High-Flux, Two-Phase Thermal Management
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021012
.10.1115/1.4023599
7.
Cheng
,
W.
,
Zhang
,
W.
,
Chen
,
H.
, and
Hu
,
L.
,
2016
, “
Spray Cooling and Flash Evaporation Cooling: The Current Development and Application
,”
Renew. Sustain. Energy Rev.
,
55
, pp.
614
628
.10.1016/j.rser.2015.11.014
8.
Zuber
,
N.
,
1958
, “
On the Stability of Boiling Heat Transfer
,”
Trans. ASME
,
80
(
3
), pp.
711
720
.https://www.semanticscholar.org/paper/ON-THE-STABILITY-OF-BOILING-HEATTRANSFER-Zuber/ddf7b46f900552607c2f10882c13e699f34ffc32
9.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. thesis,
University of California
,
Los Angeles, CA
.
10.
Kutateladze
,
S.
,
1948
, “
On the Transition to Film Boiling Under Natural Convection
,”
Kotloturbostroenie
,
3
, pp.
10
12
.
11.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. I
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
201
(
1065
), pp.
192
196.
10.1098/rspa.1950.0052
12.
Kutateladze
,
S.
,
1951
, “
A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection
,”
Izvestia Akademia Nauk Otdelenie Tekhnicheski Nauk
,
4
, pp.
529
536
.
13.
Lienhard
,
J.
, and
Dhir
,
V.
,
1973
, “
Hydrodynamic Prediction of Peak Pool-Boiling Heat Fluxes From Finite Bodies
,”
ASME J. Heat Transfer
,
95
(
2
), pp.
152
158
.10.1115/1.3450013
14.
Lienhard
,
J.
, and
Dhir
,
V.
,
1973
,
Extended Hydrodynamic Theory of the Peak and Minimum Pool Boiling Heat Fluxes
,
National Aeronautics and Space Administration
, Washington, DC.
15.
Lienhard
,
J.
,
Dhir
,
V.
, and
Riherd
,
D.
,
1973
, “
Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
477
482
.10.1115/1.3450092
16.
Gogonin
,
I.
, and
Kutateladze
,
S.
,
1977
, “
Critical Heat Flux as a Function of Heater Size for a Liquid Boiling in a Large Enclosure
,”
J. Eng. Phys.
,
33
(
5
), pp.
1286
1289
.10.1007/BF00860899
17.
Saylor
,
J.
,
1989
, “
An Experimental Study of the Size Effect in Pool Boiling CHF on Square Surfaces
,” Master's thesis,
University of Minnesota
,
Twin Cities, Minneapolis, MN
.
18.
Rainey
,
K.
, and
You
,
S.
,
2001
, “
Effects of Heater Size and Orientation on Pool Boiling Heat Transfer From Microporous Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2589
2599
.10.1016/S0017-9310(00)00318-5
19.
Berenson
,
P.
,
1960
, “
On Transition Boiling Heat Transfer From a Horizontal Surface
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
20.
Berenson
,
P.
,
1962
, “
Experiments on Pool-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
5
(
10
), pp.
985
999
.10.1016/0017-9310(62)90079-0
21.
Roy Chowdhury
,
S.
, and
Winterton
,
R.
,
1985
, “
Surface Effects in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
28
(
10
), pp.
1881
1889
.10.1016/0017-9310(85)90210-8
22.
Liaw
,
S.
, and
Dhir
,
V.
,
1986
, “
Effect of Surface Wettability on Transition Boiling Heat Transfer From a Vertical Surface
,”
Proceedings of the 8th International Heat Transfer Conference
, San Francisco, CA, pp.
2031
2036
.10.1615/IHTC8.3980
23.
Liaw
,
S.
, and
Dhir
,
V.
,
1989
, “
Void Fraction Measurements During Saturated Pool Boiling of Water on Partially Wetted Vertical Surfaces
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
731
738
.10.1115/1.3250744
24.
Maracy
,
M.
, and
Winterton
,
R.
,
1988
, “
Hysteresis and Contact Angle Effects in Transition Pool Boiling of Water
,”
Int. J. Heat Mass Transfer
,
31
(
7
), pp.
1443
1449
.10.1016/0017-9310(88)90253-0
25.
Dhir
,
V.
, and
Liaw
,
S.
,
1989
, “
Framework for a Unified Model for Nucleate and Transition Pool Boiling
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
739
746
.10.1115/1.3250745
26.
Kandlikar
,
S.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
27.
Chen
,
R.
,
Lu
,
M.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
28.
Kwark
,
S.
,
Moreno
,
G.
,
Kumar
,
R.
,
Moon
,
H.
, and
You
,
S.
,
2010
, “
Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4579
4587
.10.1016/j.ijheatmasstransfer.2010.06.035
29.
Ahn
,
H.
,
Jo
,
H.
,
Kang
,
S.
, and
Kim
,
M.
,
2011
, “
Effect of Liquid Spreading Due to Nano/Microstructures on the Critical Heat Flux During Pool Boiling
,”
Appl. Phys. Lett.
,
98
(
7
), p.
071908
.10.1063/1.3555430
30.
O'Hanley
,
H.
,
Coyle
,
C.
,
Buongiorno
,
J.
,
McKrell
,
T.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2013
, “
Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux
,”
Appl. Phys. Lett.
,
103
(
2
), p.
024102
.10.1063/1.4813450
31.
Girard
,
A.
,
Kim
,
J.
, and
You
,
S.
,
2016
, “
Pool Boiling Heat Transfer of Water on Hydrophilic Surfaces With Different Wettability
,”
ASME
Paper No. V008T10A018.10.1115/V008T10A018
32.
Costello
,
C.
,
Bock
,
C.
, and
Nichols
,
C.
,
1965
, “
A Study of Induced Convective Effects on Pool Boiling Burnout
,”
Chem. Eng. Prog. Symp. Ser.
,
61
(
7
), pp.
271
280
.
33.
Lienhard
,
J.
, and
Keeling
,
K.
, Jr.
,
1970
, “
An Induced-Convection Effect Upon the Peak-Boiling Heat Flux
,”
ASME J. Heat Transfer
,
92
(
1
), pp.
1
5
.10.1115/1.3449633
34.
Elkassabgi
,
Y.
, and
Lienhard
,
J.
,
1987
, “
Sidewall and Immersion-Depth Effects on Pool Boiling Burnout for Horizontal Cylindrical Heaters
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
1055
1057
.10.1115/1.3248184
35.
Bockwoldt
,
T.
,
Jeter
,
S.
,
Abdel-Khalik
,
S.
, and
Hartley
,
J.
,
1992
, “
Induced Convective Enhancement of the Critical Heat Flux From Partially Heated Horizontal Flat Plates in Saturated Pool Boiling
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
518
521
.10.1115/1.2911307
36.
Wei
,
J.
, and
Honda
,
H.
,
2003
, “
Effects of Fin Geometry on Boiling Heat Transfer From Silicon Chips With Micro-Pin-Fins Immersed in FC-72
,”
Int. J. Heat Mass Transfer
,
46
(
21
), pp.
4059
4070
.10.1016/S0017-9310(03)00226-6
37.
Li
,
C.
, and
Peterson
,
G.
,
2010
, “
Experimental Study of Enhanced Nucleate Boiling Heat Transfer on Uniform and Modulated Porous Structures
,”
Front. Heat Mass Transfer
,
1
(
2
), p.
023007
.10.5098/hmt.v1.2.3007
38.
Kim
,
B.
,
Lee
,
H.
,
Shin
,
S.
,
Choi
,
G.
, and
Cho
,
H.
,
2014
, “
Interfacial Wicking Dynamics and Its Impact on Critical Heat Flux of Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191601
.10.1063/1.4901569
39.
Rahman
,
M.
,
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.10.1021/la5030923
40.
Kim
,
D.
,
Yu
,
D.
,
Jerng
,
D.
,
Kim
,
M.
, and
Ahn
,
H.
,
2015
, “
Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
173
196
.10.1016/j.expthermflusci.2015.03.023
41.
Ramanujapu
,
N.
, and
Dhir
,
V.
,
1999
, “
Dynamics of Contact Angle During Growth and Detachment of a Vapor Bubble at a Single Nucleation Site
,”
Proceedings of the 5th ASME/JSME Thermal Engineering Joint Conference, San Diego, CA, Mar. 14–19.
42.
Son
,
G.
,
Dhir
,
V.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
43.
Liaw
,
S.
,
1988
, “
Experimental and Analytical Study of Nucleate and Transition Boiling on Vertical Surfaces
,” Ph.D. thesis,
University of California
,
Los Angeles, CA
.
44.
Basu
,
N.
,
Warrier
,
G.
, and
Dhir
,
V.
,
2002
, “
Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
717
728
.10.1115/1.1471522
45.
Theofanous
,
T.
,
Tu
,
J.
,
Dinh
,
A.
, and
Dinh
,
T.
,
2002
, “
The Boiling Crisis Phenomenon: Part I: Nucleation and Nucleate Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
775
792
.10.1016/S0894-1777(02)00192-9
46.
She
,
Z.
,
2021
, “
Roles Played by Heater Size, Contact Angle, Surrounding Vessel Size, and Surface Structure During Pool Boiling on Horizontal Surfaces
,” Ph.D. thesis,
University of California
,
Los Angeles, CA
.
You do not currently have access to this content.