Abstract

As the size, weight, and performance requirements of electronic devices grow increasingly demanding, their packaging has become more compact. As a result of thinning or removing the intermediate heat spreading layers, nonuniform heat generation from the chip-scale and component-level variations may be imposed directly on the attached microchannel heat sink. Despite the important heat transfer performance implications, the effect of uneven heating on the flow distribution in parallel microchannels undergoing boiling has been largely unexplored. In this study, a two-phase flow distribution model is used to investigate the impact of uneven heating on the flow distribution behavior of parallel microchannels undergoing boiling. Under lateral uneven heating (i.e., the channels are each heated to different levels, but the power input is uniform along the length of any given channel), it is found that the flow is significantly more maldistributed compared to the even heating condition. Specifically, the range of total flow rates over which the flow is maldistributed is broader and the maximum severity of flow maldistribution is higher. These trends are assessed as a function of the total input power, degree of uneven heating, and the extent of thermal connectedness between the channels. The model predictions are validated against experiments for a representative case of thermally isolated and coupled channels subjected to even heating and extreme lateral uneven heating conditions and show excellent agreement.

References

1.
Hamann
,
H. F.
,
Weger
,
A.
,
Lacey
,
J. A.
,
Hu
,
Z.
,
Bose
,
P.
,
Cohen
,
E.
, and
Wakil
,
J.
,
2007
, “
Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements
,”
IEEE J. Solid-State Circuits
,
42
(
1
), pp.
56
65
.10.1109/JSSC.2006.885064
2.
Sharma, C. S., Schlottig, G., Brunschwiler, T., Tiwari, M. K., Michel, B., and Poulikakos, D., 2015, “A Novel Method of Energy Efficient Hotspot-Targeted Embedded Liquid Cooling for Electronics: An Experimental Study,”
Int. J. Heat Mass Transfer
, 88, pp. 684–694.10.1016/j.ijheatmasstransfer.2015.04.047
3.
Costa-Patry
,
E.
,
2011
, “
Cooling High Heat Flux Micro-Electronic Systems Using Refrigerants in High Aspect Ratio Multi-Microchannel Evaporators
,” Ph.D. thesis,
EPFL
,
Lausanne, Switzerland
, p.
230
.
4.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2013
, “
A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap and Microchannel Heat Sink and an Evaluation of Microgap Heat Sink for Hotspot Mitigation
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
335
347
.10.1016/j.ijheatmasstransfer.2012.11.020
5.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
,
Cummins
,
G.
,
Kenning
,
D. B. R.
, and
Karayiannis
,
T. G.
,
2011
, “
Experimental Investigation of Non-Uniform Heating Effect on Flow Boiling Instabilities in a Microchannel-Based Heat Sink
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
309
324
.10.1016/j.ijthermalsci.2010.08.006
6.
Ritchey
,
S. N.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Local Measurement of Flow Boiling Heat Transfer in an Array of Non-Uniformly Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
71
, pp.
206
216
.10.1016/j.ijheatmasstransfer.2013.12.012
7.
Sarangi
,
R. K.
,
Bhattacharya
,
A.
, and
Prasher
,
R. S.
,
2009
, “
Numerical Modelling of Boiling Heat Transfer in Microchannels
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
300
309
.10.1016/j.applthermaleng.2008.02.039
8.
Revellin
,
R.
, and
Thome
,
J. R.
,
2008
, “
A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1216
1225
.10.1016/j.ijheatmasstransfer.2007.03.002
9.
Revellin
,
R.
,
QuibÉn
,
J. M.
,
Bonjour
,
J.
, and
Thome
,
J. R.
,
2008
, “
Effect of Local Hot Spots on the Maximum Dissipation Rates During Flow Boiling in a Microchannel
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
407
416
.10.1109/TCAPT.2008.916841
10.
Miler
,
J. L.
,
Flynn
,
R.
,
Refai-Ahmed
,
G.
,
Touzelbaev
,
M.
,
David
,
M.
,
Steinbrenner
,
J.
, and
Goodson
,
K. E.
,
2009
, “
Effects of Transient Heating on Two-Phase Flow Response in Microchannel Heat Exchangers
,”
ASME
Paper No. InterPACK2009-89325
.10.1115/InterPACK2009-89325
11.
Kingston
,
T. A.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2020
, “
Time-Resolved Characterization of Microchannel Flow Boiling During Transient Heating: Part 1–Dynamic Response to a Single Heat Flux Pulse
,”
Int. J. Heat Mass Transfer
,
154
, p.
119643
.10.1016/j.ijheatmasstransfer.2020.119643
12.
Kingston
,
T. A.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2020
, “
Time-Resolved Characterization of Microchannel Flow Boiling During Transient Heating: Part 2–Dynamic Response to Time-Periodic Heat Flux Pulses
,”
Int. J. Heat Mass Transfer
,
154
, p.
119686
.10.1016/j.ijheatmasstransfer.2020.119686
13.
Miglani
,
A.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2021
, “
Measurement of Flow Maldistribution Induced by the Ledinegg Instability During Boiling in Thermally Isolated Parallel Microchannels
,”
Int. J. Multiphase Flow
,
139
, p.
103644
.10.1016/j.ijmultiphaseflow.2021.103644
14.
Miglani
,
A.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2021
, “
An Experimental Investigation of the Effect of Thermal Coupling Between Parallel Microchannels Undergoing Boiling on the Ledinegg Instability-Induced Flow Maldistribution
,”
Int. J. Multiphase Flow
,
139
, p.
103536
.10.1016/j.ijmultiphaseflow.2020.103536
15.
Van Oevelen
,
T.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
The Effect of Lateral Thermal Coupling Between Parallel Microchannels on Two-Phase Flow Distribution
,”
Int. J. Heat Mass Transfer
,
124
, pp.
769
781
.10.1016/j.ijheatmasstransfer.2018.03.073
16.
Van Oevelen
,
T.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2017
, “
Predicting Two-Phase Flow Distribution and Stability in Systems With Many Parallel Heated Channels
,”
Int. J. Heat Mass Transfer
,
107
, pp.
557
571
.10.1016/j.ijheatmasstransfer.2016.11.050
17.
Cho
,
E. S.
,
Choi
,
J. W.
,
Yoon
,
J. S.
, and
Kim
,
M. S.
,
2010
, “
Experimental Study on Microchannel Heat Sinks Considering Mass Flow Distribution With Non-Uniform Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2159
2168
.10.1016/j.ijheatmasstransfer.2009.12.026
18.
Flynn
,
R. D.
,
Fogg
,
D. W.
,
Koo
,
J. M.
,
Cheng
,
C. H.
, and
Goodson
,
K. E.
,
2006
, “
Boiling Flow Interaction Between Two Parallel Microchannels
,”
ASME
Paper No. IMECE2006-14696.10.1115/IMECE2006-14696
19.
Flynn
,
R.
,
Cheng
,
C. H.
, and
Goodson
,
K.
,
2007
, “
Decoupled Thermal and Fluidic Effects on Hotspot Cooling in a Boiling Flow Microchannel Heat Sink
,”
ASME
Paper No. IPACK2007-33484.10.1115/IPACK2007-33484
20.
Akagawa
,
K.
,
Kono
,
M.
,
Sakaguchi
,
T.
, and
Nishimura
,
M.
,
1971
, “
Study on Distribution of Flow Rates and Flow Stabilities in Parallel Long Evaporators
,”
Bull. JSME
,
14
(
74
), pp.
837
848
.10.1299/jsme1958.14.837
21.
Minzer
,
U.
,
Barnea
,
D.
, and
Taitel
,
Y.
,
2004
, “
Evaporation in Parallel Pipes––Splitting Characteristics
,”
Int. J. Multiphase Flow
,
30
(
7–8
), pp.
763
777
.10.1016/j.ijmultiphaseflow.2004.04.006
22.
Minzer
,
U.
,
Barnea
,
D.
, and
Taitel
,
Y.
,
2006
, “
Flow Rate Distribution in Evaporating Parallel Pipes—Modeling and Experimental
,”
Chem. Eng. Sci.
,
61
(
22
), pp.
7249
7259
.10.1016/j.ces.2006.08.026
23.
Lockhart
,
R. W.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.http://dns2.asia.edu.tw/~ysho/YSHOEnglish/2000%20CE/P DF/Che%20Eng%20Pro45,%2039.pdf
You do not currently have access to this content.