Abstract

Two-phase spray cooling is considered as one of the most promising thermal management techniques characterized by high heat transfer coefficient (HTC) and critical heat flux (CHF), as well as near-uniform temperatures on target surface. Normally, spray cooling systems feature steady flow rate and continuous spray, and are designed to satisfy the maximum expected heat load. However, if the heat load varies due to operating conditions, such as cold starts and pulsing power cycles, a spray cooling system uses excessive coolant most of the time, and causes low cooling efficiencies because of lower utilization of phase-change heat transfer and higher pumping power. This study aimed to investigate variable and intermittent flow spray cooling characteristics for dynamic thermal management. Variable flow spray cooling scheme requires control of pump input voltage (or speed), and intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Tests were conducted on a closed-cycle system with HFE-7100 dielectric coolant at varying liquid flow rate and subcooling conditions, and using smooth and enhanced heat transfer surfaces. Results, compared to a baseline performance from steady flow case, indicated that the variable flow spray cooling conditions achieve similar cooling performance at low and moderate heat fluxes, while the intermittent flow spray conditions result in high temperature penalty and much lower CHF.

References

1.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling–Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.10.1016/j.ijheatmasstransfer.2017.06.029
2.
Kim
,
J. H.
,
2007
, “
Spray Cooling Heat Transfer: The State of Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
3.
Chow
,
L. C.
,
Sehmbey
,
M. S.
, and
Pais
,
M. R.
,
1997
, “
High Heat Flux Spray Cooling
,”
Annu. Rev. Heat Transfer
,
8
(
8
), pp.
291
318
.10.1615/AnnualRevHeatTransfer.v8.80
4.
Bostanci
,
H.
,
Rini
,
D. P.
,
Kizito
,
J. P.
,
Singh
,
V.
,
Seal
,
S.
, and
Chow
,
L. C.
,
2012
, “
High Heat Flux Spray Cooling With Ammonia: Investigation of Enhanced Surfaces for CHF
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3849
3856
.10.1016/j.ijheatmasstransfer.2012.03.040
5.
Bostanci
,
H.
,
Rini
,
D. P.
,
Kizito
,
J. P.
,
Singh
,
V.
,
Seal
,
S.
, and
Chow
,
L. C.
,
2014
, “
High Heat Flux Spray Cooling With Ammonia: Investigation of Enhanced Surfaces for HTC
,”
Int. J. Heat Mass Transfer
,
75
, pp.
718
725
.10.1016/j.ijheatmasstransfer.2014.04.019
6.
Bostanci
,
H.
,
Van Ee
,
D.
,
Saarloos
,
B. A.
,
Rini
,
D. P.
, and
Chow
,
L. C.
,
2012
, “
Thermal Management of Power Inverter Modules at High Fluxes Via Two-Phase Spray Cooling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
9
), pp.
1480
1485
.10.1109/TCPMT.2012.2190933
7.
Chen
,
H.
,
Cheng
,
W. L.
,
Zhang
,
W. W.
,
Peng
,
Y. H.
, and
Jiang
,
L. J.
,
2017
, “
Energy Saving Evaluation of a Novel Energy System Based on Spray Cooling for Supercomputer Center
,”
Energy
,
141
, pp.
304
315
.10.1016/j.energy.2017.09.089
8.
Mertens
,
R. G.
,
Chow
,
L.
,
Sundaram
,
K. B.
,
Cregger
,
R. B.
,
Rini
,
D. P.
,
Turek
,
L.
, and
Saarloos
,
B. A.
,
2007
, “
Spray Cooling of IGBT Devices
,”
ASME J. Electron. Packag.
,
129
(
3
), pp.
316
323
.10.1115/1.2753937
9.
Vretenar
,
N.
,
Newell
,
T. C.
,
Carson
,
T.
,
Latham
,
W. P.
,
Peterson
,
P. R.
,
Lucas
,
T.
,
Bostanci
,
H.
,
Huddle-Lindauer
,
J. J.
,
Saarloos
,
B. A.
, and
Rini
,
D. P.
,
2012
, “
Cryogenic Ceramic 277 Watt Yb: YAG Thin-Disk Laser
,”
Opt. Eng.
,
51
(
1
), p.
014201
.10.1117/1.OE.51.1.014201
10.
Zheng
,
K.
,
Petrus
,
B.
,
Thomas
,
B. G.
, and
Bentsman
,
J.
,
2007
, “
Design and Implementation of a Real-Time Spray Cooling Control System for Continuous Casting of Thin Steel Slabs
,”
Proceedings of the AISTech Steelmaking Conference
,
Indianapolis, IN
, May 7–10, Paper No. PR-351-150.http://digital.library.aist.org/pages/PR-351-150.htm
11.
Wang
,
J.
,
Li
,
Y.
, and
Wang
,
J.
,
2013
, “
Transient Performance and Intelligent Combination Control of a Novel Spray Cooling Loop System
,”
Chin. J. Aeronaut.
,
26
(
5
), pp.
1173
1181
.10.1016/j.cja.2013.07.048
12.
Ding
,
Y.
,
Li
,
Y.
,
Li
,
Y.
,
Chen
,
W.
,
Zhang
,
H.
, and
Li
,
D.
,
2014
, “
Intensive Cooling Method for Power Electronic Component With High Heat Flux
,”
Proceedings of IEEE 13th International Conference on Control Automation Robotics and Vision (ICARCV)
,
Singapore
, Dec. 10–12, pp.
163
168
.10.1109/ICARCV.2014.7064298
13.
Sai
,
T. K.
, and
Reddy
,
K. A.
,
2016
, “
Design of Fuzzy Gain Scheduler for Superheater Temperature Control in Power Plant
,”
Proceedings of IEEE Second International Conference on Control, Instrumentation, Energy and Communication (CIEC)
,
Kolkata, India
, Jan. 28–30, pp.
521
525
.10.1109/CIEC.2016.7513817
14.
Moreira
,
A. L. N.
,
Carvalho
,
J.
, and
Panao
,
M. R. O.
,
2007
, “
An Experimental Methodology to Quantify the Spray Cooling Event at Intermittent Spray Impact
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
191
202
.10.1016/j.ijheatfluidflow.2006.03.004
15.
Panao
,
M. R. O.
, and
Moreira
,
A. L. N.
,
2009
, “
Intermittent Spray Cooling: A New Technology for Controlling Surface Temperature
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
117
130
.10.1016/j.ijheatfluidflow.2008.10.005
16.
Somasundaram
,
S.
, and
Tay
,
A. A. O.
,
2011
, “
An Experimental Study of Closed Loop Intermittent Spray Cooling of ICs
,”
Int. J. Appl. Therm. Eng.
,
31
(
14–15
), pp.
2321
2331
.10.1016/j.applthermaleng.2011.03.030
17.
Liu
,
N.
,
Yu
,
Z.
,
Liang
,
Y.
, and
Zhang
,
H.
,
2019
, “
Effects of Mixed Surfactants on Heat Transfer Performance of Pulsed Spray Cooling
,”
Int. J. Heat Mass Transfer
,
144
, p.
118593
.10.1016/j.ijheatmasstransfer.2019.118593
18.
3M
,
2009
, “
3M™ Novec™ 7100 Engineered Fluid Product Information
,” 3M, Saint Paul, MN, accessed June 6, 2020, http://multimedia.3m.com/mws/media/199818O/3mtm-novectm-7100-engineered-fluid.pdf
19.
Bostanci
,
H.
, and
Joshua
,
N. E.
,
2015
, “
Nucleate Boiling of Dielectric Liquids on Hydrophobic and Hydrophilic Surfaces
,”
ASME Paper No. IMECE2015-53604
.10.1115/IMECE2015-53604
20.
Kwark
,
S. M.
,
Kim
,
J. H.
, and
You
,
S. M.
,
2014
, “
Microporous Coating by Dual-Stage Electroplating to Enhance Pool Boiling Performance of Saturated R-123 and FC-72
,”
ASME Paper No. IMECE2014-36828
.10.1115/IMECE2014-36828
21.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Multiphase Flow
,
36
(
10
), pp.
780
792
.10.1016/j.ijmultiphaseflow.2010.06.003
22.
Patil
,
C. M.
,
Santhanam
,
K. S. V.
, and
Kandlikar
,
S. G.
,
2014
, “
Development of a Two-Step Electrodeposition Process for Enhancing Pool Boiling
,”
Int. J. Heat Mass Transfer
,
79
, pp.
989
1001
.10.1016/j.ijheatmasstransfer.2014.08.062
23.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
,
64
, pp.
759
768
.https://web01.usn.no/~davidr/iia1117/control/theory/papers/Ziegler_Nichols_%201942.pdf
24.
O'Dwyer
,
A.
,
2009
,
Handbook of PI and PID Controller Tuning Rules
, 3rd ed.,
Imperial College Press
,
London, UK
.
25.
Astrom
,
K. J.
, and
Hagglund
,
T.
,
2014
, “
Revisiting the Ziegler Nichols Step Response Method for PID Control
,”
J. Process Control
,
14
, pp.
635
650
.10.1016/j.jprocont.2004.01.002
26.
Yata
,
V. V. R.
,
2017
, “
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
,” M.S. thesis,
University of North Texas
,
Denton, TX
.10.1109/ITHERM.2017.7992560
27.
Applied Processor and Measurement, Inc.
,
2013
, “
Model 500 Peak and Hold PWM Driver Data Sheet
,”
East Amherst, NY
, accessed June 25, 2020, http://www.appliedprocessor.com/pdf/APM_PWMC-500_datasheet.pdf
28.
Parker
Hannifin
,
2014
, “
Series 99 Miniature High Speed and Pressure Liquid Dispense Valve Data Sheet
,”
Cleveland, OH
, accessed June 25, 2020, http://aldax.se/wp-content/uploads/2012/07/Series-99-Data-Sheet.pdf
29.
3M
,
2016
, “
Heat Transfer Applications Using 3M™ Novec™ Engineered Fluids
,”
3M
,
Saint Paul, MN
, accessed June 6, 2020, https://multimedia.3m.com/mws/media/1091997O/3m-novec-engineered-fluids-for-heat-transfer-line-card.pdf
You do not currently have access to this content.