Abstract

High porosity metal foams offer large surface area per unit volume and have been considered as effective candidates for convection heat transfer enhancement, with applications as heat sinks in electronics cooling. In this paper, the research progress in thermohydraulic performance characterization of metal foams and their application as heat sinks for electronics cooling are reviewed. We focus on buoyancy-induced convection, forced convection, flow boiling, and solid/liquid phase change using phase change materials (PCMs). Under these heat transfer conditions, the effects of various parameters influencing the performance of metal foam heat sink are discussed. It is concluded that metal foams demonstrate promising capability for heat transfer augmentation, but some key issues still need to be investigated regarding the fundamental mechanisms of heat transfer to enable the development of more efficient and compact heat sinks.

References

1.
Lu
,
T. J.
,
2002
, “
Ultralight Porous Metals: From Fundamentals to Applications
,”
Acta Mech. Sin.
,
18
(
5
), pp.
457
479
.
2.
Banhart
,
J.
,
2001
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
.10.1016/S0079-6425(00)00002-5
3.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.10.1126/science.1211649
4.
Xu
,
H. J.
,
Gong
,
L.
,
Zhao
,
C. Y.
,
Yang
,
Y. H.
, and
Xu
,
Z. G.
,
2015
, “
Analytical Considerations of Local Thermal Non-Equilibrium Conditions for Thermal Transport in Metal Foams
,”
Int. J. Therm. Sci.
,
95
, pp.
73
87
.10.1016/j.ijthermalsci.2015.04.007
5.
Yao
,
Y. P.
,
Wu
,
H. Y.
, and
Liu
,
Z. Y.
,
2018
, “
Direct Simulation of Interstitial Heat Transfer Coefficient Between Paraffin and High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
140
(
3
), p.
032601
.10.1115/1.4038006
6.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2009
, “
Sintered Porous Heat Sink for Cooling of High-Powered Microprocessors for Server Applications
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2289
2299
.10.1016/j.ijheatmasstransfer.2008.11.016
7.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
8.
Shih
,
W. H.
,
Liu
,
C. C.
, and
Hsieh
,
W. H.
,
2016
, “
Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks With a Solid Aluminum Core
,”
Int. J. Heat Mass Transfer
,
97
, pp.
742
750
.10.1016/j.ijheatmasstransfer.2016.02.044
9.
Han
,
X. H.
,
Wang
,
Q.
,
Park
,
Y. G.
,
T'Joen
,
C.
,
Sommers
,
A.
, and
Jacobi
,
A.
,
2012
, “
A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks
,”
Heat Transfer Eng.
,
33
(
12
), pp.
991
1009
.10.1080/01457632.2012.659613
10.
Gong
,
L.
,
Li
,
Y. T.
,
Bai
,
Z.
, and
Xu
,
M. H.
,
2018
, “
Thermal Performance of Micro-Channel Heat Sink With Metallic Porous/Solid Compound Fin Design
,”
Appl. Therm. Eng.
,
137
, pp.
288
295
.10.1016/j.applthermaleng.2018.03.065
11.
Shen
,
H.
,
Liu
,
X. T.
,
Yan
,
H. B.
,
Xie
,
G. N.
, and
Sunden
,
B.
,
2018
, “
Enhanced Thermal Performance of Internal Y-Shaped Bifurcation Microchannel Heat Sinks With Metal Foams
,”
J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011001
.10.1115/1.4036767
12.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
13.
De Schampheleire
,
S.
,
De Jaeger
,
P.
,
Huisseune
,
H.
,
Ameel
,
B.
,
T'Joen
,
C.
,
De Kerpel
,
K.
, and
De Paepe
,
M.
,
2013
, “
Thermal Hydraulic Performance of 10 PPI Aluminium Foam as Alternative for Louvered Fins in an HVAC Heat Exchanger
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
371
382
.10.1016/j.applthermaleng.2012.09.027
14.
Yu
,
H.
,
Chen
,
H. Q.
,
Pan
,
M. Q.
,
Tang
,
Y.
,
Zeng
,
K.
,
Feng
,
F.
, and
Wang
,
H. J.
,
2007
, “
Effect of the Metal Foam Materials on the Performance of Methanol Steam Micro-Reformer for Fuel Cells
,”
Appl. Catal. A: General
,
327
(
1
), pp.
106
113
.10.1016/j.apcata.2007.05.003
15.
Albanakis
,
C.
,
Missirlis
,
D.
,
Michailidis
,
N.
,
Yakinthos
,
K.
,
Goulas
,
A.
,
Omar
,
H.
,
Tsipas
,
D.
, and
Granier
,
B.
,
2009
, “
Experimental Analysis of the Pressure Drop and Heat Transfer Through Metal Foams Used as Volumetric Receivers Under Concentrated Solar Radiation
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
246
252
.10.1016/j.expthermflusci.2008.08.007
16.
Mohammadian
,
S. K.
, and
Zhang
,
Y. W.
,
2017
, “
Cumulative Effects of Using Pin Fin Heat Sink and Porous Metal Foam on Thermal Management of Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
118
, pp.
375
384
.10.1016/j.applthermaleng.2017.02.121
17.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.10.1016/S1359-6454(98)00031-7
18.
Calmidi
,
V. V.
,
1998
,
Transport Phenomena in High Porosity Fibrous Metal Foams
,
University of Colorado
,
Boulder, CO
.
19.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
827
836
.10.1016/S0017-9310(00)00123-X
20.
Du
,
Y. P.
,
Zhao
,
C. Y.
,
Tian
,
Y.
, and
Qu
,
Z. G.
,
2012
, “
Analytical Considerations of Flow Boiling Heat Transfer in Metal-Foam Filled Tubes
,”
Heat Mass Transfer
,
48
(
1
), pp.
165
173
.10.1007/s00231-011-0853-1
21.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
,
2002
, “
Pressure Drop Modelling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
,
57
(
14
), pp.
2781
2789
.10.1016/S0009-2509(02)00166-5
22.
Diani
,
A.
,
Bodla
,
K. K.
,
Rossetto
,
L.
, and
Garimella
,
S. V.
,
2015
, “
Numerical Investigation of Pressure Drop and Heat Transfer Through Reconstructed Metal Foams and Comparison Against Experiments
,”
Int. J. Heat Mass Transfer
,
88
, pp.
508
515
.10.1016/j.ijheatmasstransfer.2015.04.038
23.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2006
, “
Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
259
266
.10.1115/1.2229225
24.
De Schampheleire
,
S.
,
De Jaeger
,
P.
,
Reynders
,
R.
,
De Kerpel
,
K.
,
Ameel
,
B.
,
T'Joen
,
C.
,
Huisseune
,
H.
,
Lecompte
,
S.
, and
De Paepe
,
M.
,
2013
, “
Experimental Study of Buoyancy-Driven Flow in Open-Cell Aluminium Foam Heat Sinks
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
30
40
.10.1016/j.applthermaleng.2013.05.010
25.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.10.1016/S0017-9310(02)00089-3
26.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2005
, “
Natural Convection in Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2452
2463
.10.1016/j.ijheatmasstransfer.2005.01.002
27.
Mahdi
,
H.
,
Lopez
,
P.
,
Fuentes
,
A.
, and
Jones
,
R.
,
2006
, “
Thermal Performance of Aluminium-Foam CPU Heat Exchangers
,”
Int. J. Energy Res.
,
30
(
11
), pp.
851
860
.10.1002/er.1188
28.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
,
2008
, “
Natural Convection in Metal Foam Strips With Internal Heat Generation
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1740
1747
.10.1016/j.expthermflusci.2008.06.011
29.
Krishna
,
T. R.
,
Moulic
,
S. G.
, and
Bhattacharya
,
A.
,
2017
, “
Experimental Study on Buoyancy-Induced Convection in Open Cell Aluminum Metal Foams
,”
ASME Paper No. IMECE2017-71592
.10.1115/IMECE2017-71592
30.
Paknezhad
,
M.
,
Rashidi
,
A. M.
,
Yousefi
,
T.
, and
Saghir
,
Z.
,
2017
, “
Effect of Aluminum-Foam Heat Sink on Inclined Hot Surface Temperature in the Case of Free Convection Heat Transfer
,”
Case Stud. Therm. Eng.
,
10
, pp.
199
206
.10.1016/j.csite.2017.06.007
31.
Kurtbas
,
I.
, and
Celik
,
N.
,
2009
, “
Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam-Filled Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1313
1325
.10.1016/j.ijheatmasstransfer.2008.07.050
32.
Qu
,
Z. G.
,
Wang
,
T. S.
,
Tao
,
W. Q.
, and
Lu
,
T. J.
,
2012
, “
Experimental Study of Air Natural Convection on Metallic Foam-Sintered Plate
,”
Int. J. Heat Fluid Flow
,
38
, pp.
126
132
.10.1016/j.ijheatfluidflow.2012.08.005
33.
Billiet
,
M.
,
De Schampheleire
,
S.
,
Huisseune
,
H.
, and
De Paepe
,
M.
,
2015
, “
Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection
,”
Materials
,
8
(
10
), pp.
6792
6805
.10.3390/ma8105340
34.
Feng
,
S. S.
,
Li
,
F. C.
,
Zhang
,
F. H.
, and
Lu
,
T. J.
,
2018
, “
Natural Convection in Metal Foam Heat Sinks With Open Slots
,”
Exp. Therm. Fluid Sci.
,
91
, pp.
354
362
.10.1016/j.expthermflusci.2017.07.010
35.
Barbieri
,
M.
,
Di Ilio
,
G.
,
Patanè
,
F.
, and
Bella
,
G.
,
2017
, “
Experimental Investigation on Buoyancy-Induced Convection in Aluminum Metal Foams
,”
Int. J. Refrig.
,
76
, pp.
385
393
.10.1016/j.ijrefrig.2016.12.019
36.
Kathare
,
V.
,
Kulacki
,
F. A.
, and
Davidson
,
J. H.
,
2010
, “
Buoyant Convection in Superposed Metal Foam and Water Layers
,”
ASME J. Heat Transfer
,
132
(
1
), p.
014503
.10.1115/1.3194767
37.
Kathare
,
V.
,
Davidson
,
J. H.
, and
Kulacki
,
F. A.
,
2008
, “
Natural Convection in Water-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3794
3802
.10.1016/j.ijheatmasstransfer.2007.11.051
38.
Qi
,
C.
,
Tang
,
J. H.
,
Ding
,
Z.
,
Yan
,
Y. Y.
,
Guo
,
L. X.
, and
Ma
,
Y. F.
,
2019
, “
Effects of Rotation Angle and Metal Foam on Natural Convection of Nanofluids in a Cavity Under an Adjustable Magnetic Field
,”
Int. Commun. Heat Mass Transfer
,
109
, p.
104349
.10.1016/j.icheatmasstransfer.2019.104349
39.
Wang
,
G. Q.
,
Qi
,
C.
, and
Tang
,
J. H.
,
2020
, “
Natural Convection Heat Transfer Characteristics of TiO2-H2O Nanofluids in a Cavity Filled With Metal Foam
,”
J. Therm. Anal. Calorim.
,
141
(
1
), pp.
15
24
.10.1007/s10973-020-09471-8
40.
Xu
,
H. J.
, and
Xing
,
Z. B.
,
2017
, “
The Lattice Boltzmann Modeling on the Nanofluid Natural Convective Transport in a Cavity Filled With a Porous Foam
,”
Int. Commun. Heat Mass Transfer
,
89
, pp.
73
82
.10.1016/j.icheatmasstransfer.2017.09.013
41.
Davidson
,
J. H.
,
Kulacki
,
F. A.
, and
Savela
,
D.
,
2009
, “
Natural Convection in Water-Saturated Reticulated Vitreous Carbon Foam
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4479
4483
.10.1016/j.ijheatmasstransfer.2009.03.051
42.
De Schampheleire
,
S.
,
De Kerpel
,
K.
,
De Jaeger
,
P.
,
Huisseune
,
H.
,
Ameel
,
B.
, and
De Paepe
,
M.
,
2015
, “
Buoyancy Driven Convection in Open-Cell Metal Foam Using the Volume Averaging Theory
,”
Appl. Therm. Eng.
,
79
, pp.
225
233
.10.1016/j.applthermaleng.2015.01.019
43.
Jamin
,
Y. L.
, and
Mohamad
,
A. A.
,
2008
, “
Natural Convection Heat Transfer Enhancements From a Cylinder Using Porous Carbon Foam: Experimental Study
,”
ASME J. Heat Transfer
,
130
(
12
), p.
122502
.10.1115/1.2977606
44.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W. Q.
, and
Joshi
,
Y.
,
2011
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051702
.10.1115/1.4003284
45.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
46.
Tzeng
,
S. C.
, and
Jeng
,
T. M.
,
2007
, “
Interstitial Heat Transfer Coefficient and Dispersion Conductivity in Compressed Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
129
(
2
), pp.
113
119
.10.1115/1.2721081
47.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
.10.1016/j.ijheatfluidflow.2003.08.002
48.
Tzeng
,
S. C.
,
2007
, “
Spatial Thermal Regulation of Aluminum Foam Heat Sink Using a Sintered Porous Conductive Pipe
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
117
126
.10.1016/j.ijheatmasstransfer.2006.06.034
49.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance Analysis of Porous-Microchannel Heat Sinks With Different Configuration Designs
,”
Int. J. Heat Mass Transfer
,
66
, pp.
235
243
.10.1016/j.ijheatmasstransfer.2013.07.019
50.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2003
, “
Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
262
267
.10.1109/TCAPT.2003.809540
51.
Jiang
,
P. X.
,
Li
,
M.
,
Lu
,
T. J.
,
Yu
,
L.
, and
Ren
,
Z. P.
,
2004
, “
Experimental Research on Convection Heat Transfer in Sintered Porous Plate Channels
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2085
2096
.10.1016/j.ijheatmasstransfer.2003.12.004
52.
Lee
,
Y. C.
,
Zhang
,
W. G.
, and
Xie
,
H. Q.
,
1993
, “
Cooling of an FCHIP Package With 100 W/cm2 Chip
,”
Proceedings of the 1993 ASME International Electronic Package Conference
, pp.
419
424
.
53.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
,
2001
, “
Forced Convection From Aluminum Foam Materials in an Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
,
44
(
7
), pp.
1451
1454
.10.1016/S0017-9310(00)00187-3
54.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
572
578
.10.1115/1.1287170
55.
Rachedi
,
R.
, and
Chikh
,
S.
,
2001
, “
Enhancement of Electronic Cooling by Insertion of Foam Materials
,”
Heat Mass Transfer
,
37
(
4–5
), pp.
371
378
.10.1007/s002310100192
56.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
57.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
,
2004
, “
An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
4939
4952
.10.1016/j.ijheatmasstransfer.2004.06.014
58.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers—Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.10.1016/j.ijheatmasstransfer.2005.12.012
59.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers—Part II: Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2762
2770
.10.1016/j.ijheatmasstransfer.2005.12.014
60.
Dukhan
,
N.
,
Quiñones-Ramos
,
P. D.
,
Cruz-Ruiz
,
E.
,
Vélez-Reyes
,
M.
, and
Scott
,
E. P.
,
2005
, “
One-Dimensional Heat Transfer Analysis in Open-Cell 10-Ppi Metal Foam
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5112
5120
.10.1016/j.ijheatmasstransfer.2005.07.012
61.
Dukhan
,
N.
, and
Chen
,
K. C.
,
2007
, “
Heat Transfer Measurements in Metal Foam Subjected to Constant Heat Flux
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
624
631
.10.1016/j.expthermflusci.2007.08.004
62.
Mancin
,
S.
,
Zilio
,
C.
,
Rossetto
,
L.
, and
Cavallini
,
A.
,
2012
, “
Foam Height Effects on Heat Transfer Performance of 20 Ppi Aluminum Foams
,”
Appl. Therm. Eng.
,
49
, pp.
55
60
.10.1016/j.applthermaleng.2011.05.015
63.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
64.
Hwang
,
J.-J.
,
Hwang
,
G.-J.
,
Yeh
,
R.-H.
, and
Chao
,
C.-H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.10.1115/1.1416690
65.
Dukhan
,
N.
,
Picón-Feliciano
,
R.
, and
Álvarez-Hernández
,
Á. R.
,
2006
, “
Air Flow Through Compressed and Uncompressed Aluminum Foam: Measurements and Correlations
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1004
1012
.10.1115/1.2236132
66.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Joshi
,
Y. K.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Iyer
,
M. K.
,
2005
, “
Fluid Flow and Heat Transfer in Liquid Cooled Foam Heat Sinks for Electronic Packages
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
272
280
.10.1109/TCAPT.2005.848528
67.
Shen
,
B.
,
Yan
,
H.
,
Sunden
,
B.
,
Xue
,
H.
, and
Xie
,
G.
,
2017
, “
Forced Convection and Heat Transfer of Water-Cooled Microchannel Heat Sinks With Various Structured Metal Foams
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1043
1053
.10.1016/j.ijheatmasstransfer.2017.06.004
68.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance of Porous Microchannel Heat Sink: Effects of Enlarging Channel Outlet
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
86
92
.10.1016/j.icheatmasstransfer.2013.08.001
69.
Bayomy
,
A. M.
,
Saghir
,
M. Z.
, and
Yousefi
,
T.
,
2016
, “
Electronic Cooling Using Water Flow in Aluminum Metal Foam Heat Sink: Experimental and Numerical Approach
,”
Int. J. Therm. Sci.
,
109
, pp.
182
200
.10.1016/j.ijthermalsci.2016.06.007
70.
Wan
,
Z. M.
,
Guo
,
G. Q.
,
Su
,
K. L.
,
Tu
,
Z. K.
, and
Liu
,
W.
,
2012
, “
Experimental Analysis of Flow and Heat Transfer in a Miniature Porous Heat Sink for High Heat Flux Application
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4437
4441
.10.1016/j.ijheatmasstransfer.2012.04.013
71.
Li
,
Y. T.
,
Gong
,
L.
,
Xu
,
M. H.
, and
Joshi
,
Y.
,
2020
, “
Enhancing the Performance of Aluminum Foam Heat Sinks Through Integrated Pin Fins
,”
Int. J. Heat Mass Transfer
,
151
, p.
119376
.10.1016/j.ijheatmasstransfer.2020.119376
72.
Dukhan
,
N.
,
Bağcı
,
Ö.
, and
Özdemir
,
M.
,
2015
, “
Thermal Development in Open-Cell Metal Foam: An Experiment With Constant Wall Heat Flux
,”
Int. J. Heat Mass Transfer
,
85
, pp.
852
859
.10.1016/j.ijheatmasstransfer.2015.02.047
73.
Fu
,
H. L.
,
Leong
,
K. C.
,
Huang
,
X. Y.
, and
Liu
,
C. Y.
,
2001
, “
An Experimental Study of Heat Transfer of a Porous Channel Subjected to Oscillating Flow
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
162
170
.10.1115/1.1336510
74.
Leong
,
K. C.
, and
Jin
,
L. W.
,
2005
, “
An Experimental Study of Heat Transfer in Oscillating Flow Through a Channel Filled With an Aluminum Foam
,”
Int. J. Heat Mass Transfer
,
48
(
2
), pp.
243
253
.10.1016/j.ijheatmasstransfer.2004.08.025
75.
Leong
,
K. C.
, and
Jin
,
L. W.
,
2006
, “
Characteristics of Oscillating Flow Through a Channel Filled With Open-Cell Metal Foam
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
144
153
.10.1016/j.ijheatfluidflow.2005.05.004
76.
Leong
,
K. C.
, and
Jin
,
L. W.
,
2006
, “
Effect of Oscillatory Frequency on Heat Transfer in Metal Foam Heat Sinks of Various Pore Densities
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
671
681
.10.1016/j.ijheatmasstransfer.2005.08.015
77.
Ghafarian
,
M.
,
Mohebbi-Kalhori
,
D.
, and
Sadegi
,
J.
,
2013
, “
Analysis of Heat Transfer in Oscillating Flow Through a Channel Filled With Metal Foam Using Computational Fluid Dynamics
,”
Int. J. Therm. Sci.
,
66
, pp.
42
50
.10.1016/j.ijthermalsci.2012.11.008
78.
Zhao
,
C. Y.
, and
Lu
,
T. J.
,
2002
, “
Analysis of Microchannel Heat Sinks for Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4857
4869
.10.1016/S0017-9310(02)00180-1
79.
Kim
,
S.
,
Kim
,
D.
, and
Lee
,
D. Y.
,
2000
, “
On the Local Thermal Equilibrium in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1735
1748
.10.1016/S0017-9310(99)00259-8
80.
Jeng
,
T. M.
,
Tzeng
,
S. C.
, and
Hung
,
Y. H.
,
2006
, “
An Analytical Study of Local Thermal Equilibrium in Porous Heat Sinks Using Fin Theory
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1907
1914
.10.1016/j.ijheatmasstransfer.2005.11.012
81.
Hadim
,
A.
,
1994
, “
Forced Convection in a Porous Channel With Localized Heat Sources
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
465
472
.10.1115/1.2911419
82.
Hadim
,
H. A.
, and
Bethancourt
,
A.
,
1995
, “
Numerical Study of Forced Convection in a Partially Porous Channel With Discrete Heat Sources
,”
ASME J. Electron. Packag.
,
117
(
1
), pp.
46
51
.10.1115/1.2792066
83.
Yang
,
J.
,
Zeng
,
M.
,
Wang
,
Q. W.
, and
Nakayama
,
A.
,
2010
, “
Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051702
.10.1115/1.4000708
84.
Sener
,
M.
,
Yataganbaba
,
A.
, and
Kurtbas
,
İ.
,
2016
, “
Forchheimer Forced Convection in a Rectangular Channel Partially Filled With Aluminum Foam
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
162
172
.10.1016/j.expthermflusci.2016.02.003
85.
Yang
,
Y. T.
, and
Hwang
,
C. Z.
,
2003
, “
Calculation of Turbulent Flow and Heat Transfer in a Porous-Baffled Channel
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
771
780
.10.1016/S0017-9310(02)00360-5
86.
Hwang
,
J. J.
,
1997
, “
Turbulent Heat Transfer and Fluid Flow in a Porous-Baffled Channel
,”
J. Thermophys. Heat Transfer
,
11
(
3
), pp.
429
436
.10.2514/2.6258
87.
Ko
,
K. H.
, and
Anand
,
N. K.
,
2003
, “
Use of Porous Baffles to Enhance Heat Transfer in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
46
(
22
), pp.
4191
4199
.10.1016/S0017-9310(03)00251-5
88.
Hamadouche
,
A.
,
Nebbali
,
R.
,
Benahmed
,
H.
,
Kouidri
,
A.
, and
Bousri
,
A.
,
2016
, “
Experimental Investigation of Convective Heat Transfer in an Open-Cell Aluminum Foams
,”
Exp. Therm. Fluid Sci.
,
71
, pp.
86
94
.10.1016/j.expthermflusci.2015.10.009
89.
Jeng
,
T. M.
,
Tzeng
,
S. C.
, and
Tang
,
F. Z.
,
2010
, “
Fluid Flow and Heat Transfer Characteristics of the Porous Metallic Heat Sink With a Conductive Cylinder Partially Filled in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4216
4227
.10.1016/j.ijheatmasstransfer.2010.05.044
90.
Bilen
,
K.
,
Gok
,
S.
,
Olcay
,
A. B.
, and
Solmus
,
I.
,
2017
, “
Investigation of the Effect of Aluminum Porous Fins on Heat Transfer
,”
Energy
,
138
, pp.
1187
1198
.10.1016/j.energy.2017.08.015
91.
Zehforoosh
,
A.
, and
Hossainpour
,
S.
,
2010
, “
Numerical Investigation of Pressure Drop Reduction Without Surrendering Heat Transfer Enhancement in Partially Porous Channel
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1649
1662
.10.1016/j.ijthermalsci.2010.05.016
92.
Chen
,
K. C.
, and
Wang
,
C. C.
,
2015
, “
Performance Improvement of High Power Liquid-Cooled Heat Sink Via Non-Uniform Metal Foam Arrangement
,”
Appl. Therm. Eng.
,
87
, pp.
41
46
.10.1016/j.applthermaleng.2015.05.005
93.
Wang
,
B. C.
,
Hong
,
Y. F.
,
Wang
,
L.
,
Fang
,
X. D.
,
Wang
,
P. F.
, and
Xu
,
Z. B.
,
2015
, “
Development and Numerical Investigation of Novel Gradient-Porous Heat Sinks
,”
Energy Convers. Manage.
,
106
, pp.
1370
1378
.10.1016/j.enconman.2015.10.071
94.
Karunanithi
,
A. K.
, and
Hassanipour
,
F.
,
2014
, “
Heat Sink With Stacked Multi-Layer Porous Media
,”
ASME Paper No. ICNMM2014-21370
.10.1115/ICNMM2014-21370
95.
Li
,
Y. T.
,
Gong
,
L.
,
Xu
,
M. H.
, and
Joshi
,
Y.
,
2017
, “
Thermal Performance Analysis of Biporous Metal Foam Heat Sink
,”
ASME J. Heat Transfer
,
139
(
5
), p.
052005
.10.1115/1.4035999
96.
Wang
,
B. C.
,
Hong
,
Y. F.
,
Hou
,
X. T.
,
Xu
,
Z. B.
,
Wang
,
P. F.
,
Fang
,
X. D.
, and
Ruan
,
X. D.
,
2015
, “
Numerical Configuration Design and Investigation of Heat Transfer Enhancement in Pipes Filled With Gradient Porous Materials
,”
Energy Convers. Manage.
,
105
, pp.
206
215
.10.1016/j.enconman.2015.07.064
97.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
98.
Singh
,
R.
, and
Kasana
,
H. S.
,
2004
, “
Computational Aspects of Effective Thermal Conductivity of Highly Porous Metal Foams
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1841
1849
.10.1016/j.applthermaleng.2003.12.011
99.
Betchen
,
L.
,
Straatman
,
A. G.
, and
Thompson
,
B. E.
,
2006
, “
A Non-Equilibrium Finite Volume Model for Conjugate Fluid/Porous/Solid Domains
,”
Numer. Heat Transfer, Part A: Appl.
,
49
(
6
), pp.
543
565
.10.1080/10407780500430967
100.
Hsieh
,
W. H.
,
Wu
,
J. Y.
,
Shih
,
W. H.
, and
Chiu
,
W. C.
,
2004
, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5149
5157
.10.1016/j.ijheatmasstransfer.2004.04.037
101.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
155
163
.10.1115/1.1464877
102.
DeGroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
,
2009
, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021001
.10.1115/1.3103934
103.
DeGroot
,
C. T.
,
Gateman
,
D.
, and
Straatman
,
A. G.
,
2010
, “
The Effect of Thermal Contact Resistance at Porous-Solid Interfaces in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041007
.10.1115/1.4002724
104.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2006
, “
Study of Flow and Heat Transfer Characteristics in Asymmetrically Heated Sintered Porous Heat Sinks With Periodical Baffles
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
226
235
.10.1115/1.2229220
105.
Tzeng
,
S. C.
,
Jeng
,
T. M.
, and
Wang
,
Y. C.
,
2006
, “
Experimental Study of Forced Convection in Asymmetrically Heated Sintered Porous Channels With/Without Periodic Baffles
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
78
88
.10.1016/j.ijheatmasstransfer.2005.08.006
106.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071401
.10.1115/1.4000951
107.
Li
,
Y. T.
,
Gong
,
L.
,
Xu
,
M. H.
, and
Joshi
,
Y.
,
2020
, “
Hydraulic and Thermal Performances of Metal Foam and Pin Fin Hybrid Heat Sink
,”
Appl. Therm. Eng.
,
166
, p.
114665
.10.1016/j.applthermaleng.2019.114665
108.
Shih
,
W. H.
,
Chou
,
F. C.
, and
Hsieh
,
W. H.
,
2007
, “
Experimental Investigation of the Heat Transfer Characteristics of aluminum-Foam Heat Sinks With Restricted Flow Outlet
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1554
1563
.10.1115/1.2759972
109.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2005
, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4685
4694
.10.1016/j.ijheatmasstransfer.2005.06.032
110.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2007
, “
Forced Convection of Metallic Foam Heat Sink Under Laminar Slot Jet Confined by Parallel Wall
,”
Heat Transfer Eng.
,
28
(
5
), pp.
484
495
.10.1080/01457630601166127
111.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2007
, “
Experimental Study of Forced Convection in Metallic Porous Block Subject to a Confined Slot Jet
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1242
1250
.10.1016/j.ijthermalsci.2007.01.007
112.
Shih
,
W. H.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
,
2006
, “
Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
530
537
.10.1115/1.2188461
113.
Kuang
,
J. J.
,
Kim
,
T.
,
Xu
,
M. L.
, and
Lu
,
T. J.
,
2012
, “
Ultralightweight Compact Heat Sinks With Metal Foams Under Axial Fan Flow Impingement
,”
Heat Transfer Eng.
,
33
(
7
), pp.
642
650
.10.1080/01457632.2012.630270
114.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.10.1016/j.ijheatmasstransfer.2014.05.053
115.
Singh
,
P.
,
Nithyanandam
,
K.
, and
Mahajan
,
R. L.
,
2020
, “
An Experimental and Numerical Investigation of Forced Convection in High Porosity Aluminum Foams Subjected to Jet Array Impingement in Channel-Flow
,”
Int. J. Heat Mass Transfer
,
149
, p.
119107
.10.1016/j.ijheatmasstransfer.2019.119107
116.
Singh
,
P.
,
Zhang
,
M. Y.
, and
Mahajan
,
R. L.
,
2019
, “
Effect of Metal Foam Thickness and Pore Density on Array Jet Impingement Heat Transfer
,”
ASME Paper No. IMECE2019-11591
.10.1115/IMECE2019-11591
117.
Madhavan
,
S.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Jet Impingement Heat Transfer Enhancement by Packing High-Porosity Thin Metal Foams Between Jet Exit Plane and Target Surface
,”
J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061016
.10.1115/1.4043470
118.
Singh
,
P.
,
Zhang
,
M. Y.
,
Pandit
,
J.
, and
Mahajan
,
R. L.
,
2018
, “
Array Jet Impingement Onto High Porosity Thin Metal Foams at Zero Jet-to-Foam Spacing
,”
ASME Paper No. IMECE2018-87915
.10.1115/IMECE2018-87915
119.
Madhavan
,
S.
, and
Singh
,
P.
,
2018
, “
Experimental Investigation of Heat Transfer Enhancement Through Array Jet Impingement on Various Configurations of High Porosity Thin Metal Foams
,”
ASME Paper No. IMECE2018-86432
.10.1115/IMECE2018-86432
120.
Hung
,
T. C.
, and
Yan
,
W. M.
,
2014
, “
Optimization of Design Parameters for a Sandwich-Distribution Porous-Microchannel Heat Sink
,”
Numer. Heat Transfer, Part A: Appl.
,
66
(
3
), pp.
229
251
.10.1080/10407782.2013.872978
121.
Hung
,
T. C.
,
Huang
,
Y. X.
,
Sheu
,
T. S.
, and
Yan
,
W. M.
,
2014
, “
Numerical Optimization of the Thermal Performance of a Porous-Microchannel Heat Sink
,”
Numer. Heat Transfer, Part A: Appl.
,
65
(
5
), pp.
419
434
.10.1080/10407782.2013.836005
122.
Dathathri
,
S.
, and
Balaji
,
C.
,
2015
, “
Heat Transfer and Optimization Studies on Layered Porous Stackings Under an Imposed Pressure Drop
,”
Int. Commun. Heat Mass Transfer
,
60
, pp.
32
36
.10.1016/j.icheatmasstransfer.2014.11.009
123.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Transport Analysis in Parallel-Plate Channel Filled With Open-Celled Metallic Foams
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
868
873
.10.1016/j.icheatmasstransfer.2011.04.015
124.
Inayat
,
A.
,
Klumpp
,
M.
,
Lämmermann
,
M.
,
Freund
,
H.
, and
Schwieger
,
W.
,
2016
, “
Development of a New Pressure Drop Correlation for Open-Cell Foams Based Completely on Theoretical Grounds: Taking Into Account Strut Shape and Geometric Tortuosity
,”
Chem. Eng. J.
,
287
, pp.
704
719
.10.1016/j.cej.2015.11.050
125.
De Schampheleire
,
S.
,
De Jaeger
,
P.
,
De Kerpel
,
K.
,
Ameel
,
B.
,
Huisseune
,
H.
, and
De Paepe
,
M.
,
2016
, “
How to Study Thermal Applications of Open-Cell Metal Foam: Experiments and Computational Fluid Dynamics
,”
Materials
,
9
(
2
), p.
94
.10.3390/ma9020094
126.
Ghahremannezhad
,
A.
, and
Vafai
,
K.
,
2018
, “
Thermal and Hydraulic Performance Enhancement of Microchannel Heat Sinks Utilizing Porous Substrates
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1313
1326
.10.1016/j.ijheatmasstransfer.2018.02.024
127.
Jiang
,
P. X.
,
Si
,
G. S.
,
Li
,
M.
, and
Ren
,
Z. P.
,
2004
, “
Experimental and Numerical Investigation of Forced Convection Heat Transfer of Air in Non-Sintered Porous Media
,”
Exp. Therm. Fluid Sci.
,
28
(
6
), pp.
545
555
.10.1016/j.expthermflusci.2003.07.006
128.
Dukhan
,
N.
,
Bağcı
,
Ö.
, and
Özdemir
,
M.
,
2014
, “
Metal Foam Hydrodynamics: Flow Regimes from Pre-Darcy to Turbulent
,”
Int. J. Heat Mass Transfer
,
77
, pp.
114
123
.10.1016/j.ijheatmasstransfer.2014.05.017
129.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
,
2005
, “
Metal Foam Heat Sink for Transmission Window
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3793
3803
.10.1016/j.ijheatmasstransfer.2005.02.040
130.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.10.1023/A:1006643815323
131.
Noh
,
J. S.
,
Lee
,
K. B.
, and
Lee
,
C. G.
,
2006
, “
Pressure Loss and Forced Convective Heat Transfer in an Annulus Filled With Aluminum Foam
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
434
444
.10.1016/j.icheatmasstransfer.2005.11.003
132.
Suleiman
,
A. S.
, and
Dukhan
,
N.
,
2014
, “
Long-Domain Simulation of Flow in Open-Cell Mesoporous Metal Foam and Direct Comparison to Experiment
,”
Microporous Mesoporous Mater.
,
196
, pp.
104
114
.10.1016/j.micromeso.2014.05.003
133.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
.10.1016/j.ijheatmasstransfer.2013.02.050
134.
Sadeghi
,
E.
,
Hsieh
,
S.
, and
Bahrami
,
M.
,
2011
, “
Thermal Conductivity and Contact Resistance of Metal Foams
,”
J. Phys. D: Appl. Phys.
,
44
(
12
), p.
125406
.10.1088/0022-3727/44/12/125406
135.
Wang
,
J.
,
Kong
,
H.
,
Xu
,
Y.
, and
Wu
,
J.
,
2019
, “
Experimental Investigation of Heat Transfer and Flow Characteristics in Finned Copper Foam Heat Sinks Subjected to Jet Impingement Cooling
,”
Appl. Energy
,
241
, pp.
433
443
.10.1016/j.apenergy.2019.03.040
136.
De Jaeger
,
P.
,
T'Joen
,
C.
,
Huisseune
,
H.
,
Ameel
,
B.
,
De Schampheleire
,
S.
, and
De Paepe
,
M.
,
2012
, “
Assessing the Influence of Four Bonding Methods on the Thermal Contact Resistance of Open-Cell Aluminum Foam
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6200
6210
.10.1016/j.ijheatmasstransfer.2012.06.043
137.
De Jaeger
,
P.
,
T'Joen
,
C.
,
Huisseune
,
H.
,
Ameel
,
B.
,
De Schampheleire
,
S.
, and
De Paepe
,
M.
,
2012
, “
Assessing the Influence of Four Cutting Methods on the Thermal Contact Resistance of Open-Cell Aluminum Foam
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6142
6151
.10.1016/j.ijheatmasstransfer.2012.06.033
138.
Tseng
,
P. H.
,
Tsai
,
K. T.
,
Chen
,
A. L.
, and
Wang
,
C. C.
,
2019
, “
Performance of Novel Liquid-Cooled Porous Heat Sink Via 3-D Laser Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
137
, pp.
558
564
.10.1016/j.ijheatmasstransfer.2019.03.116
139.
Broughton
,
J.
, and
Joshi
,
Y.
,
2020
, “
Comparison of Single-Phase Convection in Additive Manufactured Versus Traditional Metal Foams
,”
ASME J. Heat Transfer
,
142
(
8
), p.
082201
.10.1115/1.4046972
140.
Broughton
,
J.
, and
Joshi
,
Y.
,
2019
, “
A Numerical Investigation of Additive Manufactured Foam Structures for Single Phase Hotspot Thermal Management
,”
ASME Paper No. IPACK2019-6519
.10.1115/IPACK2019-6519
141.
Srinivasan
,
K. V.
,
Manimaran
,
A.
,
Arulprakasajothi
,
M.
,
Revanth
,
M.
, and
Arolkar
,
V. A.
,
2019
, “
Design and Development of Porous Regenerator for Stirling Cryocooler Using Additive Manufacturing
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
195
203
.10.1016/j.tsep.2019.03.013
142.
Huang
,
G.
,
Min
,
Z.
,
Yang
,
L.
,
Jiang
,
P. X.
, and
Chyu
,
M.
,
2018
, “
Transpiration Cooling for Additive Manufactured Porous Plates With Partition Walls
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1076
1087
.10.1016/j.ijheatmasstransfer.2018.03.110
143.
Ramirez
,
D. A.
,
Murr
,
L. E.
,
Li
,
S. J.
,
Tian
,
Y. X.
,
Martinez
,
E.
,
Martinez
,
J. L.
,
Machado
,
B. I.
,
Gaytan
,
S. M.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2011
, “
Open-Cellular Copper Structures Fabricated by Additive Manufacturing Using Electron Beam Melting
,”
Mater. Sci. Eng.: A
,
528
(
16–17
), pp.
5379
5386
.10.1016/j.msea.2011.03.053
144.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
,
2006
, “
Sintered Porous Medium Heat Sink for Cooling of High-Power Mini-Devices
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
259
266
.10.1016/j.ijheatfluidflow.2005.08.005
145.
Green
,
C.
,
Kottke
,
P.
,
Han
,
X. F.
,
Woodrum
,
C.
,
Sarvey
,
T.
,
Asrar
,
P.
,
Zhang
,
X. C.
,
Joshi
,
Y.
,
Fedorov
,
A.
,
Sitaraman
,
S.
, and
Bakir
,
M.
,
2015
, “
A Review of two-Phase Forced Cooling in three-Dimensional Stacked Electronics-Technology Integration
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040802
.10.1115/1.4031481
146.
Kim
,
D. W.
,
Bar-Cohen
,
A.
, and
Han
,
B.
,
2008
, “
Forced Convection and Flow Boiling of a Dielectric Liquid in a Foam-Filled Channel
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 28–31, pp.
86
94
.10.1109/ITHERM.2008.4544258
147.
Diani
,
A.
,
Mancin
,
S.
, and
Rossetto
,
L.
,
2014
, “
Experimental Analysis of R134a Flow Boiling Inside a 5 PPI Copper Foam
,”
J. Phys.: Conf. Ser.
,
501
(
1
), p.
012017
.10.1088/1742-6596/501/1/012017
148.
Ji
,
X. B.
, and
Xu
,
J. L.
,
2012
, “
Experimental Study on the Two-Phase Pressure Drop in Copper Foams
,”
Heat Mass Transfer
,
48
(
1
), pp.
153
164
.10.1007/s00231-011-0860-2
149.
Madani
,
B.
,
Tadrist
,
L.
, and
Topin
,
F.
,
2013
, “
Experimental Analysis of Upward Flow Boiling Heat Transfer in a Channel Provided With Copper Metallic Foam
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
336
344
.10.1016/j.applthermaleng.2012.11.046
150.
Kouidri
,
A.
, and
Madani
,
B.
,
2017
, “
Thermal and Hydrodynamic Performance of Flow Boiling Through a Heat Exchanger Filled With Various Metallic Foam Samples
,”
Chem. Eng. Process.: Process Intensif.
,
121
, pp.
162
169
.10.1016/j.cep.2017.08.014
151.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tassou
,
S. A.
,
2009
, “
Flow Boiling Heat Transfer in Horizontal Metal-Foam Tubes
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121002
.10.1115/1.3216036
152.
Lu
,
W.
, and
Zhao
,
C. Y.
,
2009
, “
Numerical Modelling of Flow Boiling Heat Transfer in Horizontal Metal-Foam Tubes
,”
Adv. Eng. Mater.
,
11
(
10
), pp.
832
836
.10.1002/adem.200900139
153.
Zhu
,
Y.
,
Hu
,
H. T.
,
Sun
,
S.
, and
Ding
,
G. L.
,
2015
, “
Flow Boiling of Refrigerant in Horizontal Metal-Foam Filled Tubes—Part 2: A Flow-Pattern Based Prediction Method for Heat Transfer
,”
Int. J. Heat Mass Transfer
,
91
, pp.
502
511
.10.1016/j.ijheatmasstransfer.2015.07.099
154.
Zhu
,
Y.
,
Hu
,
H. T.
,
Sun
,
S.
, and
Ding
,
G. L.
,
2015
, “
Flow Boiling of Refrigerant in Horizontal Metal-Foam Filled Tubes—Part 1: Two-Phase Flow Pattern Visualization
,”
Int. J. Heat Mass Transfer
,
91
, pp.
446
453
.10.1016/j.ijheatmasstransfer.2015.07.096
155.
Bamorovat Abadi
,
G.
,
Moon
,
C.
, and
Kim
,
K. C.
,
2016
, “
Flow Boiling Visualization and Heat Transfer in Metal-Foam-Filled Mini tubes—Part II: Developing Predictive Methods for Heat Transfer Coefficient and Pressure Drop
,”
Int. J. Heat Mass Transfer
,
98
, pp.
868
878
.10.1016/j.ijheatmasstransfer.2016.03.042
156.
Bamorovat Abadi
,
G.
,
Moon
,
C.
, and
Kim
,
K. C.
,
2016
, “
Flow Boiling Visualization and Heat Transfer in Metal-Foam-Filled Mini tubes—Part I: Flow Pattern Map and Experimental Data
,”
Int. J. Heat Mass Transfer
,
98
, pp.
857
867
.10.1016/j.ijheatmasstransfer.2016.03.043
157.
Hu
,
H. T.
,
Zhu
,
Y.
,
Ding
,
G. L.
, and
Sun
,
S.
,
2013
, “
Effect of Oil on Two-Phase Pressure Drop of Refrigerant Flow Boiling Inside Circular Tubes Filled With Metal Foam
,”
Int. J. Refrig.
,
36
(
2
), pp.
516
526
.10.1016/j.ijrefrig.2012.10.037
158.
Hu
,
H. T.
,
Zhu
,
Y.
,
Peng
,
H.
,
Ding
,
G. L.
, and
Sun
,
S.
,
2014
, “
Effect of Tube Diameter on Pressure Drop Characteristics of Refrigerant-Oil Mixture Flow Boiling Inside Metal-Foam Filled Tubes
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
433
443
.10.1016/j.applthermaleng.2013.09.051
159.
Hu
,
H. T.
,
Zhu
,
Y.
,
Peng
,
H.
,
Ding
,
G. L.
, and
Sun
,
S.
,
2014
, “
Influence of Tube Diameter on Heat Transfer Characteristics of Refrigerant-Oil Mixture Flow Boiling in Metal-Foam Filled Tubes
,”
Int. J. Refrig.
,
41
, pp.
121
136
.10.1016/j.ijrefrig.2014.01.005
160.
Zhu
,
Y.
,
Hu
,
H. T.
,
Ding
,
G. L.
,
Sun
,
S.
, and
Jing
,
Y. L.
,
2013
, “
Influence of Metal Foam on Heat Transfer Characteristics of Refrigerant-Oil Mixture Flow Boiling Inside Circular Tubes
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1246
1256
.10.1016/j.applthermaleng.2012.06.045
161.
Li
,
H. Y.
, and
Leong
,
K. C.
,
2011
, “
Experimental and Numerical Study of Single and Two-Phase Flow and Heat Transfer in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4904
4912
.10.1016/j.ijheatmasstransfer.2011.07.002
162.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
,
Rahman
,
S.
,
Yilbas
,
B. S.
, and
Sahin
,
A. Z.
,
2017
, “
Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
26
50
.10.1016/j.rser.2017.01.169
163.
Sivasamy
,
P.
,
Devaraju
,
A.
, and
Harikrishnan
,
S.
,
2018
, “
Review on Heat Transfer Enhancement of Phase Change Materials (PCMs)
,”
Mater. Today: Proc.
,
5
(
6
), pp.
14423
14431
.10.1016/j.matpr.2018.03.028
164.
Yoo
,
D. W.
, and
Joshi
,
Y. K.
,
2004
, “
Energy Efficient Thermal Management of Electronic Components Using Solid-Liquid Phase Change Materials
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
641
649
.10.1109/TDMR.2004.840854
165.
Arshad
,
A.
,
Ali
,
H. M.
,
Khushnood
,
S.
, and
Jabbal
,
M.
,
2018
, “
Experimental Investigation of PCM Based Round Pin-Fin Heat Sinks for Thermal Management of Electronics: Effect of Pin-Fin Diameter
,”
Int. J. Heat Mass Transfer
,
117
, pp.
861
872
.10.1016/j.ijheatmasstransfer.2017.10.008
166.
Weinstein
,
R. D.
,
Kopec
,
T. C.
,
Fleischer
,
A. S.
,
D'Addio
,
E.
, and
Bessel
,
C. A.
,
2008
, “
The Experimental Exploration of Embedding Phase Change Materials With Graphite Nanofibers for the Thermal Management of Electronics
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042405
.10.1115/1.2818764
167.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
.10.1016/j.solener.2010.04.022
168.
Gopalan
,
K. S.
, and
Eswaran
,
V.
,
2016
, “
Numerical Investigation of Thermal Performance of PCM Based Heat Sink Using Structured Porous Media as Thermal Conductivity Enhancers
,”
Int. J. Therm. Sci.
,
104
, pp.
266
280
.10.1016/j.ijthermalsci.2016.01.008
169.
Sahoo
,
S. K.
,
Das
,
M. K.
, and
Rath
,
P.
,
2016
, “
Application of TCE-PCM Based Heat Sinks for Cooling of Electronic Components: A Review
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
550
582
.10.1016/j.rser.2015.12.238
170.
Chen
,
J. Q.
,
Yang
,
D. H.
,
Jiang
,
J. H.
,
Ma
,
A. B.
, and
Song
,
D.
,
2014
, “
Research Progress of Phase Change Materials (PCMs) Embedded With Metal Foam (a Review)
,”
Procedia Mater. Sci.
,
4
, pp.
389
394
.10.1016/j.mspro.2014.07.579
171.
Zhang
,
P.
,
Meng
,
Z. N.
,
Zhu
,
H.
,
Wang
,
Y. L.
, and
Peng
,
S. P.
,
2017
, “
Melting Heat Transfer Characteristics of a Composite Phase Change Material Fabricated by Paraffin and Metal Foam
,”
Appl. Energy
,
185
, pp.
1971
1983
.10.1016/j.apenergy.2015.10.075
172.
Pal
,
D.
, and
Joshi
,
Y. K.
,
1998
, “
Thermal Management of an Avionics Module Using Solid-Liquid Phase-Change Materials
,”
J. Thermophys. Heat Transfer
,
12
(
2
), pp.
256
262
.10.2514/2.6329
173.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Shaikh
,
S.
,
2007
, “
Experimental Study on the Influence of Foam Porosity and Pore Size on the Melting of Phase Change Materials
,”
J. Appl. Phys.
,
102
(
8
), p.
083549
.10.1063/1.2802183
174.
Qu
,
Z. G.
,
Li
,
W. Q.
,
Wang
,
J. L.
, and
Tao
,
W. Q.
,
2012
, “
Passive Thermal Management Using Metal Foam Saturated With Phase Change Material in a Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1546
1549
.10.1016/j.icheatmasstransfer.2012.09.001
175.
Li
,
W. Q.
,
Wan
,
H.
,
Jing
,
T. T.
,
Li
,
Y. B.
,
Liu
,
P. J.
,
He
,
G. Q.
, and
Qin
,
F.
,
2019
, “
Microencapsulated Phase Change Material (MEPCM) Saturated in Metal Foam as an Efficient Hybrid PCM for Passive Thermal Management: A Numerical and Experimental Study
,”
Appl. Therm. Eng.
,
146
, pp.
413
421
.10.1016/j.applthermaleng.2018.10.006
176.
Yang
,
X.
,
Bai
,
Q.
,
Guo
,
Z.
,
Niu
,
Z.
,
Yang
,
C.
,
Jin
,
L.
,
Lu
,
T. J.
, and
Yan
,
J.
,
2018
, “
Comparison of Direct Numerical Simulation With Volume-Averaged Method on Composite Phase Change Materials for Thermal Energy Storage
,”
Appl. Energy
,
229
, pp.
700
714
.10.1016/j.apenergy.2018.08.012
177.
Feng
,
S. S.
,
Shi
,
M.
,
Li
,
Y. F.
, and
Lu
,
T. J.
,
2015
, “
Pore-Scale and Volume-Averaged Numerical Simulations of Melting Phase Change Heat Transfer in Finned Metal Foam
,”
Int. J. Heat Mass Transfer
,
90
, pp.
838
847
.10.1016/j.ijheatmasstransfer.2015.06.088
178.
Hong
,
S. T.
, and
Herling
,
D. R.
,
2007
, “
Effects of Surface Area Density of Aluminum Foams on Thermal Conductivity of Aluminum Foam‐Phase Change Material Composites
,”
Adv. Eng. Mater.
,
9
(
7
), pp.
554
557
.10.1002/adem.200700023
179.
Hong
,
S. T.
, and
Herling
,
D. R.
,
2006
, “
Open-Cell Aluminum Foams Filled With Phase Change Materials as Compact Heat Sinks
,”
Scr. Mater.
,
55
(
10
), pp.
887
890
.10.1016/j.scriptamat.2006.07.050
180.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Elgafy
,
A.
,
2008
, “
Merits of Employing Foam Encapsulated Phase Change Materials for Pulsed Power Electronics Cooling Applications
,”
ASME J. Electron. Packag.
,
130
(
2
): p.
021004
.10.1115/1.2912185
181.
Li
,
W.
,
Zhang
,
D.
,
Jing
,
T.
,
Gao
,
M.
,
Liu
,
P.
,
He
,
G.
, and
Qin
,
F.
,
2018
, “
Nano-Encapsulated Phase Change Material Slurry (Nano-PCMS) Saturated in Metal Foam: A New Stable and Efficient Strategy for Passive Thermal Management
,”
Energy
,
165
, pp.
743
751
.10.1016/j.energy.2018.09.147
182.
Zhu
,
Z. Q.
,
Huang
,
Y. K.
,
Hu
,
N.
,
Zeng
,
Y.
, and
Fan
,
L. W.
,
2018
, “
Transient Performance of a PCM-Based Heat Sink With a Partially Filled Metal Foam: Effects of the Filling Height Ratio
,”
Appl. Therm. Eng.
,
128
, pp.
966
972
.10.1016/j.applthermaleng.2017.09.047
183.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
,
2003
, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Transition Compon. Packag. Technol.
,
26
(
1
), pp.
116
125
.10.1109/TCAPT.2003.811480
184.
Kothari
,
R.
,
Mahalkar
,
P.
,
Sahu
,
S. K.
, and
Kundalwal
,
S. I.
,
2018
, “
Experimental Investigations on Thermal Performance of PCM Based Heat Sink for Passive Cooling of Electronic Components
,”
ASME Paper No. ICNMM2018-7732
. 10.1115/ICNMM2018-7732
185.
Zhu
,
F.
,
Zhang
,
C.
, and
Gong
,
X.
,
2017
, “
Numerical Analysis on the Energy Storage Efficiency of Phase Change Material Embedded in Finned Metal Foam With Graded Porosity
,”
Appl. Therm. Eng.
,
123
, pp.
256
265
.10.1016/j.applthermaleng.2017.05.075
186.
Chen
,
Z. Q.
,
Gao
,
D. Y.
, and
Shi
,
J.
,
2014
, “
Experimental and Numerical Study on Melting of Phase Change Materials in Metal Foams at Pore Scale
,”
Int. J. Heat Mass Transfer
,
72
, pp.
646
655
.10.1016/j.ijheatmasstransfer.2014.01.003
187.
Jin
,
H. Q.
, and
Fan
,
L. W.
,
2016
, “
Melting of a Phase Change Material Filled in a Metal Foam: A Visualized Study at the Pore-Scale Using Infrared Imaging
,”
ASME Paper No. HT2016-7338
.10.111/HT2016-7338
188.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2011
, “
A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals
,”
Energy
,
36
(
9
), pp.
5539
5546
.10.1016/j.energy.2011.07.019
189.
Li
,
W. Q.
,
Qu
,
Z. G.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
Experimental and Numerical Studies on Melting Phase Change Heat Transfer in Open-Cell Metallic Foams Filled With Paraffin
,”
Appl. Therm. Eng.
,
37
, pp.
1
9
.10.1016/j.applthermaleng.2011.11.001
190.
Zhu
,
F.
,
Zhang
,
C.
, and
Gong
,
X.
,
2016
, “
Numerical Analysis and Comparison of the Thermal Performance Enhancement Methods for Metal Foam/Phase Change Material Composite
,”
Appl. Therm. Eng.
,
109
, pp.
373
383
.10.1016/j.applthermaleng.2016.08.088
191.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2007
, “
Effect of Orientation for Phase Change Material (PCM)-Based Heat Sinks for Transient Thermal Management of Electric Components
,”
Int. Commun. Heat Mass Transfer
,
34
(
7
), pp.
801
808
.10.1016/j.icheatmasstransfer.2007.03.008
192.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Experimental Investigations on Thermal Performance Enhancement and Effect of Orientation on Porous Matrix Filled PCM Based Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
27
30
.10.1016/j.icheatmasstransfer.2013.05.018
193.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.10.1115/1.2010494
194.
Hu
,
X.
,
Wan
,
H.
, and
Patnaik
,
S. S.
,
2015
, “
Numerical Modeling of Heat Transfer in Open-Cell Micro-Foam With Phase Change Material
,”
Int. J. Heat Mass Transfer
,
88
, pp.
617
626
.10.1016/j.ijheatmasstransfer.2015.04.044
195.
Sundarram
,
S. S.
, and
Li
,
W.
,
2014
, “
The Effect of Pore Size and Porosity on Thermal Management Performance of Phase Change Material Infiltrated Microcellular Metal Foams
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
147
154
.10.1016/j.applthermaleng.2013.11.072
196.
Hu
,
X.
, and
Patnaik
,
S. S.
,
2014
, “
Modeling Phase Change Material in Micro-Foam Under Constant Temperature Condition
,”
Int. J. Heat Mass Transfer
,
68
, pp.
677
682
.10.1016/j.ijheatmasstransfer.2013.09.054
197.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.10.1016/0009-2509(94)00170-7
198.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gorden and Breach
,
New York
.
You do not currently have access to this content.