Abstract

The ongoing growth in data center rack power density leads to an increased capability for waste heat recovery. Recent studies revealed the organic Rankine cycle (ORC) as a viable means for data center waste heat recovery since the ORC uses waste heat to generate on-site, low-cost electricity, which can produce economic benefits by reducing the overall data center power consumption. This paper describes the first experimental and theoretical study of a lab-scale ORC designed for ultralow grade (40–85 °C) waste heat conditions typical of a data center server rack, and it outlines the implementation of a similar ORC system for a data center. The experimental results show thermal efficiencies ranging from 1.9% at 43 °C to 4.6% at 81 °C. The largest contributors to ORC exergy destruction are the evaporator and condenser due to large fluid temperature differences in the heat exchangers. The average isentropic efficiency of the expander is 70%. A second-law analysis estimates a reduction of 4–8% in data center power requirements when ORC power is fed back into the servers at a waste heat temperature of 90 °C. The data from the lab-scale experiment, when complemented by the thermodynamic model, provide the necessary first step toward advancing this type of waste heat recovery for data centers (DCs).

References

References
1.
Koomey
,
J.
,
2011
, “
Growth in Data Center Electricity Use 2005 to 2010
,”
Rep. Anal. Press Complet. Req. N. Y. Times
, pp.
1
24
.https://www.missioncriticalmagazine.com/articles/82420-growth-in-data-center-electricity-use-2005-to-2010
2.
Delforge
,
P.
, and
Whitney
,
J.
,
2014
, “
NRDC: Data Center Efficiency Assessment—Scaling Up Energy
,” Natural Resources Defense Council (NRDC), New York, Report No.
14-08-A
.https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
3.
ASHRAE,
2011
, “
Thermal Guidelines for Data Processing Environments–Expanded Data Center Classes and Usage Guidance
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, Standard No.
TC. 9.9 ASHRAE
.https://ecoinfo.cnrs.fr/IMG/pdf/ashrae_2011_thermal_guidelines_data_center.pdf
4.
Pelley
,
S.
,
Meisner
,
D.
,
Wenisch
,
T. F.
, and
VanGilder
,
J. W.
,
2009
, “
Understanding and Abstracting Total Data Center Power
,”
In Workshop Energy-Efficient Design
, Austin, TX, June 20, pp.
1
6
.https://web.eecs.umich.edu/~twenisch/papers/weed09.pdf
5.
Ni
,
J.
, and
Bai
,
X.
,
2017
, “
A Review of Air Conditioning Energy Performance in Data Centers
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
625
640
.10.1016/j.rser.2016.09.050
6.
Capozzoli
,
A.
, and
Primiceri
,
G.
,
2015
, “
Cooling Systems in Data Centers: State of Art and Emerging Technologies
,”
Energy Procedia
,
83
, pp.
484
493
.10.1016/j.egypro.2015.12.168
7.
Steller
,
W.
,
Windrich
,
F.
,
Bremner
,
D.
,
Robertson
,
S.
,
Mroßko
,
R.
,
Keller
,
J.
,
Brunschwiler
,
T.
,
Schlottig
,
G.
,
Oppermann
,
H.
,
Wolf
,
M. J.
, and
Lang
,
K.-D.
,
2018
, “
Microfluidic Interposer for High Performance Fluidic Chip Cooling
,”
Proceedings, presented at the Seventh Electronic System-Integration
, Dresden, Germany, Sept. 18–21, p. 854344.10.1109/ESTC.2018.8546344
8.
Google Data Centers
, 2019, “
Efficiency—Data Centers—Google
,” Google Data Centers, accessed Mar. 1, 2019, https://www.google.com/about/datacenters/efficiency/
9.
Bernard
,
R.
, and
Belady
,
C.
,
2018
, “
Microsoft Cloud Delivers When It Comes to Energy Efficiency and Carbon-Emission Reductions, Study Finds
,” Microsoft on the Issues, Albuquerque, NM, accessed Mar. 1, 2019, https://blogs.microsoft.com/on-the-issues/2018/05/17/microsoft-cloud-delivers-when-it-comes-to-energy-efficiency-and-carbon-emission-reductions-study-finds/
10.
Facebook Sustainability
, 2019, “Sustainable data centers—Facebook Sustainability,” Facebook Sustainability, accessed Mar. 1, 2019, https://sustainability.fb.com/innovation-for-our-world/sustainable-data-centers/
11.
Amazon Web Services, 2019, “AWS & Sustainability,” Amazon Web Services, Seattle, WA, accessed Mar. 1, 2019, https://aws.amazon.com/about-aws/sustainability/
12.
Wahlroos
,
M.
,
Pärssinen
,
M.
,
Manner
,
J.
, and
Syri
,
S.
,
2017
, “
Utilizing Data Center Waste Heat in District Heating—Impacts on Energy Efficiency and Prospects for Low-Temperature District Heating Networks
,”
Energy
,
140
, pp.
1228
1238
.10.1016/j.energy.2017.08.078
13.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2014
, “
A Review of Data Center Cooling Technology, Operating Conditions and the Corresponding Low-Grade Waste Heat Recovery Opportunities
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
622
638
.10.1016/j.rser.2013.12.007
14.
Little
,
A. B.
, and
Garimella
,
S.
,
2011
, “
Comparative Assessment of Alternative Cycles for Waste Heat Recovery and Upgrade
,”
Energy
,
36
(
7
), pp.
4492
4504
.10.1016/j.energy.2011.03.069
15.
Tiwari
,
M. K.
,
Zimmermann
,
S.
,
Sharma
,
C. S.
,
Alfieri
,
F.
,
Renfer
,
A.
,
Brunschwiler
,
T.
,
Meijer
,
I.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2012
, “
Waste Heat Recovery in Supercomputers and 3D Integrated Liquid Cooled Electronics
,”
Presented at the ITHERM InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, May 30–June 1, pp.
545
551
.10.1109/ITHERM.2012.6231478
16.
Brunschwiler
,
T.
,
Meijer
,
G. I.
,
Paredes
,
S.
,
Escher
,
W.
, and
Michel
,
B.
,
2010
, “
Direct Waste Heat Utilization From Liquid-Cooled Supercomputers
,”
ASME
Paper No. IHTC14-23352.10.1115/IHTC14-23352
17.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2017
, “
The Viability of Ultra Low Temperature Waste Heat Recovery Using Organic Rankine Cycle in Dual Loop Data Center Applications
,”
Appl. Therm. Eng.
,
126
, pp.
393
406
.10.1016/j.applthermaleng.2017.07.001
18.
Qiu
,
G.
,
Liu
,
H.
, and
Riffat
,
S.
,
2011
, “
Expanders for Micro-CHP Systems With Organic Rankine Cycle
,”
Appl. Therm. Eng
,
31
(
16
), pp.
3301
3307
.10.1016/j.applthermaleng.2011.06.008
19.
Angelino
,
G.
, and
Invernizzi
,
C. M.
,
2009
, “
Carbon Dioxide Power Cycles Using Liquid Natural Gas as Heat Sink
,”
Appl. Therm. Eng
,
29
(
14–15
), pp.
2935
2941
.10.1016/j.applthermaleng.2009.03.003
20.
Quoilin
,
S.
,
Broek
,
M. V. D.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev
,
22
, pp.
168
186
.10.1016/j.rser.2013.01.028
21.
Tchanche
,
B. F.
,
Lambrinos
,
G.
,
Frangoudakis
,
A.
, and
Papadakis
,
G.
,
2011
, “
Low-Grade Heat Conversion Into Power Using Organic Rankine Cycles—A Review of Various Applications
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
3963
3979
.10.1016/j.rser.2011.07.024
22.
Bao
,
J.
, and
Zhao
,
L.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
.10.1016/j.rser.2013.03.040
23.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
,
Moazami
,
N.
, and
Mirhadizadeh
,
S. A.
,
2017
, “
Review of Organic Rankine Cycle for Small-Scale Applications
,”
Energy Convers. Manage.
,
134
, pp.
135
155
.10.1016/j.enconman.2016.12.023
24.
Honeywell Refrigerants
,
2010
, “Genetron® 245fa (R-245fa) |European Refrigerants”, Honeywell Refrigerants, accessed Mar. 1, 2019, https://www.honeywell-refrigerants.com/europe/wp-content/uploads/2013/03/honeywell-genetron-245a-orc-systems-brochure1.pdf
25.
Fluid-o-Tech
,
2019
, “Rotary Vane Pumps: TH 500-1000 Series Vane Pumps - Fluidotech,” Fluid-o-Tech, accessed Mar. 1, 2019, https://www.fluidotech.it/en/products/technologies/rotary-vane-pumps/th-500-1000-series/
26.
Xylem
,
2018
, “BrazePak Brazed Plate Heat Exchangers,” Xylem, Standard Xchange, accessed Mar. 1, 2019, https://www.xylem.com/siteassets/brand/standard-xchange/resources/brazepak---copper-brazed-plate/brazepak-brazed-plate-heat-exchangers-104-82.pdf
27.
Miller
,
R.
,
2018
, “Power Densities Edge Higher, But AI Could Accelerate the Trend,” Data Center Frontier, accessed Mar. 1, 2019, https://datacenterfrontier.com/rack-density-trends-higher-but-ai-could-boost-a-high-density-horizon/
28.
Miller
,
R.
,
2019
, “Report: Data Center Rack Density is Rising, and Heading Higher,” Data Center Frontier, accessed Mar. 1, 2019, https://datacenterfrontier.com/report-data-center-rack-density-is-rising-and-heading-higher/
29.
Datacenters.com News,
2018
, “Understanding the Interplay Between Data Center Power Consumption/Data Center Energy Consumption and Power Density,” Datacenters.com, accessed Mar. 1, 2019, https://www.datacenters.com/news/understanding-the-interplay-between-data-center-power-consumption-data-center-en
30.
Quoilin
,
S.
,
Declaye
,
S.
,
Legros
,
A.
,
Guillaume
,
L.
, and
Lemort
,
V.
,
2012
, “
Working Fluid Selection and Operating Maps for Organic Rankine Cycle Expansion Machines
,”
Proceedings of the 21st International Compressor Conference at Purdue
, Purdue University, West Lafayette, IN, July 16–19, p.
10
.https://www.researchgate.net/publication/261696593_Working_fluid_selection_and_operating_maps_for_Organic_Rankine_Cycle_expansion_Machines
31.
Aoun, B., and Clodic, D. F.
, 2008, “Theoretical and Experimental Study of an Oil-Free Scroll Vapor Expander,” 19th International Compressor Engineering Conference, Purdue University, West Lafayette, IN, July 14–17, Paper No.
1925
.https://www.researchgate.net/publication/254636100_Theoretical_and_Experimental_Study_of_an_Oil-Free_Scroll_Vapor_Expander
32.
Declaye
,
S.
,
Quoilin
,
S.
,
Guillaume
,
L.
, and
Lemort
,
V.
,
2013
, “
Experimental Study on an Open-Drive Scroll Expander Integrated Into an ORC (Organic Rankine Cycle) System With R245fa as Working Fluid
,”
Energy
,
55
, pp.
173
183
.10.1016/j.energy.2013.04.003
33.
Honeywell Advanced Materials
,
2017
, “Honeywell Enovate 245fa, Technical Information,” Honeywell Advanced Materials, accessed Mar. 1, 2019, https://www.fluorineproducts-honeywell.com/blowingagents/wp-content/uploads/2018/12/470-Solstice-Enovate-245fa-Tech-Datasheet-v4-WEB.pdf
34.
Eyerer
,
S.
,
Eyerer
,
P.
,
Eicheldinger
,
M.
,
Sax
,
S.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2017
, “
Material Compatibility of ORC Working Fluids With Polymers
,”
Energy Procedia
,
129
, pp.
137
144
.10.1016/j.egypro.2017.09.189
35.
Araya
,
S.
,
2019
, “
Construction and Study of an Organic Rankine Cycle as a Waste Heat Recovery System in Data Centers
,” Ph.D. dissertation, Villanova University, Villanova, PA.
36.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 10.0
,” National Institute of Standards and Technology, Gaithersburg, MD.https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport
37.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
38.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
39.
Sonntag
,
R. E.
,
Borgnakke
,
C.
, and
Van Wylen
,
G. J.
,
1998
,
Fundamentals of Thermodynamics
, 5th ed,
Wiley
,
New York
.
40.
Wark
,
K.
,
1995
,
Advanced Thermodynamics for Engineers
,
McGraw-Hill
,
New York
.
41.
Moran
,
M. J.
,
2008
,
Fundamentals of Engineering Thermodynamics
, 6th ed.,
Wiley
,
Hoboken, NJ
.
42.
Planck
,
M.
,
1945
,
Treatise on Thermodynamics
, 3rd ed.,
Dover Publications
,
New York
.
43.
Fukui
,
A.
,
Takeda
,
T.
,
Hirose
,
K.
, and
Yamasaki
,
M.
,
2010
, “
HVDC Power Distribution Systems for Telecom Sites and Data Centers
,”
The 2010 International Power Electronics Conference—ECCE ASIA
, Sapporo, Japan, June 21–24, pp.
874
880
.10.1109/IPEC.2010.5543344
44.
Ton
,
M.
,
Fortenbery
,
B.
, and
Tschudi
,
W.
,
2008
, “
DC Power Improved Data Center Efficiency
,” LBNL, Berkeley, CA, https://datacenters.lbl.gov/sites/default/files/DC%20Power%20Demo_2008.pdf
45.
Masanet
,
E. R.
,
Brown
,
R. E.
,
Shehabi
,
A.
,
Koomey
,
J. G.
, and
Nordman
,
B.
,
2011
, “
Estimating the Energy Use and Efficiency Potential of U.S. Data Centers
,”
Proc. IEEE
,
99
(
8
), pp.
1440
1453
.10.1109/JPROC.2011.2155610
46.
ZhabelovaYavarian
,
G.
,
Vyatkin
,
A. V.
, and
Huang
,
A. Q.
,
2015
, “
Data Center Energy Efficiency and Power Quality: An Alternative Approach With Solid State Transformer
,” 41st Annual Conference of the IEEE Industrial Electronics Society (
IECON
), Yokohama, Japan, Nov. 9–12, p.
001294
.10.1109/IECON.2015.7392279
47.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
, and
Thome
,
J. R.
,
2012
, “
On-Chip Two-Phase Cooling of Datacenters: Cooling System and Energy Recovery Evaluation
,”
Appl. Therm. Eng
,
41
, pp.
36
51
.10.1016/j.applthermaleng.2011.12.008
48.
Cader
,
T.
,
Westra
,
L.
, and
Marquez
,
A.
,
2007
, “
Technologies for the Energy-Efficient Data Center
,”
ASME
Paper No. IPACK2007-33463
. 10.1115/IPACK2007-33463
49.
Khalid
,
R.
,
Schon
,
S. G.
,
Ortega
,
A.
, and
Wemhoff
,
A. P.
,
2019
, “
Waste Heat Recovery Using Coupled 2-Phase Cooling and Heat-Pump Driven Absorption Refrigeration
,”
Presented at the IEEE ITherm Conference
, Las Vegas, NV, May 28–31, p.
267
.10.1109/ITHERM.2019.8757465
This content is only available via PDF.
You do not currently have access to this content.