Abstract

Experimental research of subcooled flow boiling heat transfer of de-ionized water in a high-aspect-ratio, one-sided heating, vertical rectangular microchannel having a hydraulic diameter of 0.94 mm (5.01 mm × 0.52 mm) is carried out. The tested heat flux, mass flux, and inlet fluid subcooling are in the ranges of 0–30 W/cm2, 200–500 kg/m2 s, and 5–20 °C, respectively. A series of 24 existing correlations for subcooled flow boiling heat transfer are systematically reviewed and evaluated against the experimental data containing 328 points, which give significantly different predictions. Some typical conventional correlations such as Kandlikar, Shah, Chen, and Liu and Winterton predict well, among which the Shah correlation performs the best with the mean absolute deviation (MAD) of 10.45%. However, they all neglect the effect of fluid subcooling, especially in low-subcooling regime. Based on the Shah correlation, a new correlation for subcooled flow boiling heat transfer in the vertical narrow microchannel considering the subcooling effect is developed, which shows higher precision of prediction with the MAD of 7.87%.

References

1.
Ribatski
,
G.
,
Navarro
,
H. A.
,
Cabezas-Gómez
,
L.
, and
Saíz-Jabardo
,
J. M.
,
2007
, “
The Advantages of Evaporation in Micro-Scale Channels to Cool Microelectronic Devices
,”
Therm. Eng.
,
6
(
2
), pp.
34
39
.https://pdfs.semanticscholar.org/d5a3/360a098f24dcc318d48133ccc274c71a0cf3.pdf
2.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
3.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels—Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.10.1016/j.ijheatmasstransfer.2004.01.006
4.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1967
1976
.10.1016/j.ijheatmasstransfer.2009.12.059
5.
Cheng
,
L.
, and
Xia
,
G.
,
2017
, “
Fundamental Issues, Mechanisms and Models of Flow Boiling Heat Transfer in Microscale Channels
,”
Int. J. Heat Mass Transfer
,
108
, pp.
97
127
.10.1016/j.ijheatmasstransfer.2016.12.003
6.
Zhou
,
K.
,
Zhu
,
H.
,
Li
,
W.
,
Li
,
J.
,
Sheng
,
K.
,
Shao
,
S.
,
Li
,
H.
, and
Tao
,
Z.
,
2019
, “
Heat Transfer Characteristics and Flow Pattern Visualization for Flow Boiling in a Vertical Narrow Microchannel
,”
ASME J. Electron. Packag.
,
141
(
3
), p.
031006
.10.1115/1.4043476
7.
Li
,
J.
,
Zhou
,
K.
, and
Li
,
W.
,
2019
, “
Subcooled Flow Boiling on Micro-Porous Structured Copper Surface in a Vertical Mini-Gap Channel
,”
ASME
Paper No. MNHMT2019-3934.10.1115/MNHMT2019-3934
8.
Yu
,
X.
,
Woodcock
,
C.
,
Wang
,
Y.
,
Plawsky
,
J.
, and
Peles
,
Y.
,
2017
, “
Enhanced Subcooled Flow Boiling Heat Transfer in Microchannel With Piranha Pin Fin
,”
ASME J. Heat Transfer
,
139
(
11
), p.
112402
.10.1115/1.4036683
9.
Young
,
S. J.
,
Janssen
,
D.
,
Wenzel
,
E. A.
,
Shadakofsky
,
B. M.
, and
Kulacki
,
F. A.
,
2018
, “
Multidevice Cooling With Flow Boiling in a Variable Microgap
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061014
.10.1115/1.4040965
10.
Wang
,
S.
,
Chen
,
H. H.
, and
Chen
,
C. L.
,
2018
, “
Flow Boiling Heat Transfer of HFE7000 in Manifold Microchannels Through Integrating Three-Dimensional Flow and Silicon Nanowires
,”
IEEE 2018 17th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 29–June 1, pp.
630
638
.10.1109/ITHERM.2018.8419625
11.
Wang
,
G.
, and
Cheng
,
P.
,
2009
, “
Subcooled Flow Boiling and Microbubble Emission Boiling Phenomena in a Partially Heated Microchannel
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
79
91
.10.1016/j.ijheatmasstransfer.2008.06.031
12.
Piasecka
,
M.
,
2015
, “
Correlations for Flow Boiling Heat Transfer in Minichannels With Various Orientations
,”
Int. J. Heat Mass Transfer
,
81
, pp.
114
121
.10.1016/j.ijheatmasstransfer.2014.09.063
13.
Fang
,
X.
,
Yuan
,
Y.
,
Xu
,
A.
,
Tian
,
L.
, and
Wu
,
Q.
,
2017
, “
Review of Correlations for Subcooled Flow Boiling Heat Transfer and Assessment of Their Applicability to Water
,”
Nucl. Eng. Des.
,
122
, pp.
52
63
.10.1016/j.fusengdes.2017.09.008
14.
Bar-Cohen
,
A.
,
Sheehan
,
J. R.
, and
Rahim
,
E.
,
2012
, “
Two-Phase Thermal Transport in Microgap Channels—Theory, Experimental Results, and Predictive Relations
,”
Microgravity Sci. Technol.
,
24
(
1
), pp.
1
15
.10.1007/s12217-011-9284-3
15.
Yin
,
L.
,
Xu
,
R.
,
Jiang
,
P.
,
Cai
,
H.
, and
Jia
,
L.
,
2017
, “
Subcooled Flow Boiling of Water in a Large Aspect Ratio Microchannel
,”
Int. J. Heat Mass Transfer
,
112
, pp.
1081
1089
.10.1016/j.ijheatmasstransfer.2017.05.028
16.
McAdams
,
W. H.
,
Kennel
,
W. E.
,
Minden
,
C. S.
,
Carl
,
R.
,
Picornell
,
P. M.
, and
Dew
,
J. E.
,
1949
, “
Heat Transfer at High Rates to Water With Surface Boiling
,”
Ind. Eng. Chem.
,
41
(
9
), pp.
1945
1953
.10.1021/ie50477a027
17.
Hata
,
K.
, and
Masuzaki
,
S.
,
2010
, “
Critical Heat Fluxes of Subcooled Water Flow Boiling in a Short Vertical Tube at High Liquid Reynolds Number
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3145
3157
.10.1016/j.nucengdes.2010.05.035
18.
Aladiev
,
I. T.
,
Dodonov
,
L. D.
, and
Udalov
,
U. S.
,
1957
,
Teploenergetika
,
4
(
9
).
19.
Jens
,
W. H.
, and
Lottes
,
P. A.
,
1951
, “
An Analysis of Heat Transfer, Burnout, Pressure Drop and Density Data for High Pressure Water
,” Argonne National Lab, Lemont, IL, Report No.
ANL-4627
.10.2172/4421630
20.
Thom
,
J. R. S.
,
Walker
,
W. M.
,
Fallon
,
T. A.
, and
Reising
,
G. F. S.
,
1965
, “
Boiling in Subcooled Water During Flow Up Heated Tubes or Annuli
,”
Symposium on Boiling Heat Transfer in Steam Generating Units and Heat Exchengers
, Manchester, UK, Sept. 15–16, Paper No.
6
. 10.1243/PIME_CONF_1965_180_117_02
21.
Labuntzov
,
D. A.
,
1972
, “
Heat Transfer Problems With Nucleate Boiling of Liquids
,”
Therm. Eng.
,
19
(
9
), pp.
21
28
.https://www.osti.gov/biblio/4412897
22.
Kandlikar
,
S. G.
,
1998
, “
Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
395
401
.10.1115/1.2824263
23.
Shah
,
M. M.
,
1977
, “
A General Correlation for Heat Transfer During Subcooled Boiling in Pipes and Annuli
,”
ASHRAE Trans.
,
83
(
1
), pp.
202
217
.https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7870230507
24.
Shah
,
M. M.
,
2017
, “
New Correlation for Heat Transfer During Subcooled Boiling in Plain Channels and Annuli
,”
Int. J. Therm. Sci.
,
112
, pp.
358
370
.10.1016/j.ijthermalsci.2016.10.016
25.
Hata
,
K.
, and
Noda
,
N.
,
2008
, “
Turbulent Heat Transfer for Heating of Water in a Short Vertical Tube
,”
J. Power Energy Syst.
,
2
(
1
), pp.
318
329
.10.1299/jpes.2.318
26.
Papell
,
S. S.
,
1963
, “
Subcooled Boiling Heat Transfer Under Forced Convection in a Heated Tube
,” NASA Technical Note D-1583, Lewis Research Center, Cleveland, OH, Report No.
NASA-TN-D-1583
.https://ntrs.nasa.gov/search.jsp?R=19630004089
27.
Badiuzzaman
,
M.
,
1967
, “
Correlation of Subcooled Boiling Data
,”
Pak. Eng.
,
7
, pp.
759
764
.
28.
Moles
,
F. D.
, and
Shaw
,
J. F. G.
,
1972
, “
Boiling Heat Transfer to Subcooled Liquids Under Condition of Forced Convection
,”
Trans. Inst. Chem. Eng.
,
50
(
1
), pp.
76
84
.
29.
Baburajan
,
P. K.
,
Bisht
,
G. S.
,
Gupta
,
S. K.
, and
Prabhu
,
S. V.
,
2013
, “
Measurement of Subcooled Boiling Pressure Drop and Local Heat Transfer Coefficient in Horizontal Tube Under LPLF Conditions
,”
Nucl. Eng. Des.
,
255
, pp.
169
179
.10.1016/j.nucengdes.2012.10.012
30.
Lee
,
J.
, and
Mudawar
,
I.
,
2008
, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat Sinks—Part 2: Subcooled Boiling Pressure Drop and Heat
,”
Transfer Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4327
4341
.10.1016/j.ijheatmasstransfer.2008.02.013
31.
Rohsenow
,
W. M.
,
1953
, “
Heat Transfer With Evaporation
,”
Proceedings of Heat Transfer—A Symposium Held at the University of Michigan During the Summer of 1952
, pp.
101
150
.
32.
Haynes
,
B. S.
, and
Fletcher
,
D. F.
,
2003
, “
Subcooled Flow Boiling Heat Transfer in Narrow Passages
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3673
3682
.10.1016/S0017-9310(03)00172-8
33.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
.10.1021/i260019a023
34.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.10.1016/0017-9310(86)90205-X
35.
Yan
,
J.
,
Bi
,
Q.
,
Liu
,
Z.
,
Zhu
,
G.
, and
Cai
,
L.
,
2015
, “
Subcooled Flow Boiling Heat Transfer of Water in a Circular Tube Under High Heat Fluxes and High Mass Fluxes
,”
Fusion Eng. Des.
,
100
, pp.
406
418
.10.1016/j.fusengdes.2015.07.007
36.
Kutateladze
,
S. S.
,
1961
, “
Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
4
, pp.
31
45
.10.1016/0017-9310(61)90059-X
37.
Liu
,
Z.
, and
Winterton
,
R. H. S.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
.10.1016/0017-9310(91)90234-6
38.
Hua
,
S.
,
Huang
,
R.
,
Li
,
Z.
, and
Zhou
,
P.
,
2015
, “
Experimental Study on the Heat Transfer Characteristics of Subcooled Flow Boiling With Cast Iron Heating Surface
,”
Appl. Therm. Eng.
,
77
, pp.
180
191
.10.1016/j.applthermaleng.2014.11.082
39.
Ramstorfer
,
F.
,
Steiner
,
H.
,
Brenn
,
G.
,
Kormann
,
C.
, and
Rammer
,
F.
,
2008
, “
Subcooled Boiling Flow Heat Transfer From Plain and Enhanced Surfaces in Automotive Applications
,”
ASME J. Heat Transfer
,
130
(
1
), p.
011501
.10.1115/1.2780178
40.
Li
,
W.
,
Chen
,
Z.
,
Li
,
J.
,
Sheng
,
K.
, and
Zhu
,
J.
,
2019
, “
Subcooled Flow Boiling on Hydrophilic and Super-Hydrophilic Surfaces in Microchannel Under Different Orientations
,”
Int. J. Heat Mass Transfer
,
129
, pp.
635
649
.10.1016/j.ijheatmasstransfer.2018.10.003
You do not currently have access to this content.