Abstract

With easier access to space and the growing integration of power-dense components, small-scale thermal management solutions are increasingly in demand for small satellite systems. Due to the strict mass and volume requirements commanded by such power-dense small spacecraft, heat pipes with thin and flat architectures provide nearly ideal solutions for the efficient transfer and dissipation of heat. Unlike traditional heat pipes, however, the performance of thin heat pipes is heavily dependent on details of the internal heat pipe structure, including the vapor core geometry and structural mechanical characteristics. In this study, the development and testing of a new computational modeling and optimization tool are presented for the design of thin flat heat pipes. The computational model is described in detail and includes parameters that define properties of the liquid wick, vapor core, and structural case. The model is coupled to a gradient-based optimization procedure that minimizes a multi-objective cost function for a range of operating conditions. The cost function is expressed as the weighted sum of the total temperature drop, the liquid/vapor pressure ratio, the total mass of the heat pipe, and the structural deflection of the heat pipe during operation. The combined computational modeling and optimization tool is then used to design a copper-methanol flat heat pipe for a small satellite mission, where the optimization is performed with respect to both cold and hot orbital conditions. Validation of the optimized heat pipe is performed using computational fluid dynamics (CFD) simulations of the initial and final designs.

References

1.
Harkness
,
R. E.
,
1969
, “
Performance of the GOES-II Heat Pipe System
,” APL Technical Digest, 8(5).
2.
Hengeveld
,
D. W.
,
Mathison
,
M. M.
,
Braun
,
J. E.
,
Groll
,
E. A.
, and
Williams
,
A. D.
,
2010
, “
Review of Modern Spacecraft Thermal Control Technologies
,”
HVACR Research
, 16(2), pp. 189–220.10.1080/10789669.2010.10390900
3.
Hengeveld
,
D. W.
,
Wilson
,
M. R.
,
Moulton
,
J. A.
,
Taft
,
B. S.
, and
Kwas
,
A. M.
,
2018
, “
Thermal Design Considerations for Future High-Power Small Satellites
,”
48th International Conference on Environmental Systems
, Albuquerque, NM, July 8–12.https://www.researchgate.net/publication/328968262_Thermal_design_considerations_for_future_high-power_small_satellites
4.
Nakamura
,
Y.
,
Nishijo
,
K.
,
Murakami
,
N.
,
Karashima
,
K.
,
Horikawa
,
Y.
,
Yamamoto
,
K.
,
Ohtani
,
T.
,
Takhashi
,
Y.
, and
Inoue
,
K.
,
2013
, “
Small Demonstration Satellite-4 (SDS-4): Development, Flight Results, and Lessons Learned in JAXA's Microsatellite Project
,”
27th Annual AIAA/USU Conference on Small Satellites
.https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2978&context=smallsat
5.
Yost, B., 2018, “
State of Art of Small Satellite Technology
,” NASA Ames Research Center, Small Spacecraft Systems Virtual Institute, Washington, DC, accessed Feb, 23, 2019, https://sst-soa.arc.nasa.gov/07-therma
6.
Kim
,
S. J.
,
Seo
,
J. K.
, and
Do
,
K. H.
,
2003
, “
Analytical and Experimental Investigation on the Operational Characteristics and the Thermal Optimization of a Miniature Heat Pipe With a Grooved Wick Structure
,”
Int. J. Heat Mass Transfer
,
46
(
11
), pp.
2051
2063
.10.1016/S0017-9310(02)00504-5
7.
Do
,
K. H.
,
Kim
,
S. J.
, and
Garimella
,
S. V.
,
2008
, “
A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe With a Grooved Wick
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4637
4650
.10.1016/j.ijheatmasstransfer.2008.02.039
8.
Cao
,
Y.
, and
Faghri
,
A.
,
1994
, “
Micro/Miniature Heat Pipes and Operating Limitations
,”
J. Enhanced Heat Transfer
,
1
(
3
), pp.
265
274
.10.1615/JEnhHeatTransf.v1.i3.80
9.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
,
Altman
,
D. H.
, and
North
,
M. T.
,
2012
, “
Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications
,”
Trans. Compon., Packaging Manuf. Technol.
,
2
(
9
), pp.
1465
1479
.10.1109/TCPMT.2012.2194738
10.
Ye
,
Y.
,
Shi
,
Y.
,
Saw
,
L. H.
, and
Tay
,
A. A.
,
2016
, “
Performance Assessment and Optimization of a Heat Pipe Thermal Management System for Fast Charging Lithium Ion Battery Packs
,”
Int. J. Heat Mass Transfer
,
92
, pp.
893
903
.10.1016/j.ijheatmasstransfer.2015.09.052
11.
Lurie
,
S.
,
Rabinskiy
,
L.
, and
Solyaev
,
Y.
,
2019
, “
Topology Optimization of the Wick Geometry in a Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
128
, pp.
239
247
.10.1016/j.ijheatmasstransfer.2018.08.125
12.
Rajesh
,
V. G.
, and
Ravindran
,
K. P.
,
1997
, “
Optimum Heat Pipe Design: A Nonlinear Programming Approach
,”
Int. Commun. Heat Mass Transfer
,
24
(
3
), pp.
371
380
.10.1016/S0735-1933(97)00022-5
13.
de Sousa
,
F. L.
,
Vlassov
,
V.
, and
Ramos
,
F. M.
,
2004
, “
Generalized Extremal Optimization: An Application in Heat Pipe Design
,”
Appl. Math. Modell.
,
28
(
10
), pp.
911
931
.10.1016/j.apm.2004.04.004
14.
Vlassov
,
V. V.
,
de Sousa
,
F. L.
, and
Takahashi
,
W. K.
,
2006
, “
Comprehensive Optimization of a Heat Pipe Radiator Assembly Filled With Ammonia or Acetone
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4584
4595
.10.1016/j.ijheatmasstransfer.2006.02.059
15.
Isaacs
,
S. A.
,
Arias
,
D. A.
,
Hengeveld
,
D.
, and
Hamlington
,
P. E.
,
2017
, “
Experimental Development and Computational Optimization of Flat Heat Pipes for CubeSat Applications
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020910
.10.1115/1.4036406
16.
Huang
,
G.
,
Liu
,
W.
,
Luo
,
Y.
,
Deng
,
T.
,
Li
,
Y.
, and
Chen
,
H.
,
2020
, “
Research and Optimization Design of Limited Internal Cavity of Ultra-Thin Vapor Chamber
,”
Int. J. Heat Mass Transfer
,
148
, p.
119101
.10.1016/j.ijheatmasstransfer.2019.119101
17.
Geem
,
Z. W.
, and
Hwangbo
,
H.
,
2006
, “
Application of Harmony Search to Multi-Objective Optimization for Satellite Heat Pipe Design
,”
Proceedings US Korea Conference on Science, Technology, and Entrepreneurship
, Teaneck, NJ, Aug. 10–13, pp.
1
3
.https://www.researchgate.net/publication/242406457_Application_of_Harmony_Search_to_Multi-Objective_Optimization_for_Satellite_Heat_Pipe_Design
18.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
,
Wu
,
J.
, and
Peterson
,
G. P.
,
2009
, “
Study on Flow and Heat Transfer Characteristics of Heat Pipe With Axial Omega-Shaped Microgrooves
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
636
643
.10.1016/j.ijheatmasstransfer.2008.08.003
19.
Zhang
,
C.
,
Chen
,
Y.
,
Shi
,
M.
, and
Peterson
,
G. P.
,
2009
, “
Optimization of Heat Pipe With Axial “Omega”-Shaped Micro Grooves Based on a Niched Pareto Genetic Algorithm (NPGA)
,”
Appl. Therm. Eng.
,
29
(
16
), pp.
3340
3345
.10.1016/j.applthermaleng.2009.05.008
20.
Rao
,
R. V.
, and
More
,
K. C.
,
2015
, “
Optimal Design of the Heat Pipe Using TLBO (Teaching-Learning-Based Optimization) Algorithm
,”
Energy
,
80
, pp.
535
544
.10.1016/j.energy.2014.12.008
21.
Turgut
,
O. E.
, and
Coban
,
M. T.
,
2017
, “
Thermal Design of Spiral Heat Exchangers and Heat Pipes Through Global Best Algorithm
,”
Heat Mass Transfer
,
53
(
3
), pp.
899
916
.10.1007/s00231-016-1861-y
22.
Patel
,
V. K.
,
2018
, “
An Efficient Optimization and Comparative Analysis of Ammonia and Methanol Heat Pipe Satellite Application
,”
Energy Convers. Manage.
,
165
, pp.
382
395
.10.1016/j.enconman.2018.03.076
23.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
,
Springer
, Berlin.
24.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
, Wiley, Hoboken, NJ.https://www.wiley.com/en-us/An+Introduction+to+Heat+Pipes%3A+Modeling%2C+Testing%2C+and+Applications-p-9780471305125
25.
Van Ooijen
,
H.
, and
Hoogendoorn
,
C. J.
,
1982
, “
Experimental Pressure Profiles Along the Vapor Channel of a Flat-Plate Heat Pipe
,”
Advances in Heat Pipe Technology
, Pergamon, Oxford, UK, pp.
415
426
.10.1016/B978-0-08-027284-9.50042-5
26.
Young
,
W. C.
, and
Budnyas
,
R. G.
,
2017
, “
Roark's Formulas for Stress and Strain
,” McGraw-Hill, New York.http://materiales.azc.uam.mx/gjl/Clases/MA10_I/Roark's%20formulas%20for%20stress%20and%20strain.pdf
27.
Adams
,
B. A.
,
Bauman
,
L. E.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Ebeida
,
M. S.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Hough
,
P. D.
,
Hu
,
K. T.
,
Jakeman
,
J. D.
,
Stephens
,
J. A.
,
Swiler
,
L. P.
,
Vigil
,
D. M.
, and
Wildey
,
T. M.
,
2016
, “
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.5 User's Manual
,” Sandia, Albuquerque, NM, Report No.
SAND2014-4633
.10.2172/1177077
28.
Fletcher
,
R.
, and
Reeves
,
C. M.
,
1964
, “
Function Minimization by Conjugate Gradients
,”
Comput. J.
,
7
(
2
), pp.
149
154
.10.1093/comjnl/7.2.149
29.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2013
, “
Evaporation Analysis in Sintered Wick Microstructures
,”
Int. J. Heat Mass Transfer
,
61
(
1
), pp.
729
741
.10.1016/j.ijheatmasstransfer.2013.02.038
30.
Jasak
,
H.
,
Jemcov
,
A.
, and
Tukovic
,
Z.
,
2007
, “
Openfoam: A C++ Library for Complex Physics Simulations
,”
International Workshop on Coupled Methods in Numerical Dynamics
, Vol.
1000
, Dubrovnik, Croatia, Sept. 19–21, pp.
1
20
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.9673&rep=rep1&type=pdf
31.
Openfoam
,
2018
, “
The OpenFOAM Foundation
,” Openfoam, London, UK, accessed July 1, 2018, https://openfoam.org/
32.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
You do not currently have access to this content.