Abstract

Liquid cooling garments (LCGs) are considered feasible cooling equipment to protect individuals from hyperthermia and heat-related illness when working in extremely hot and stressful environments. So far, the goals for the optimization design of LCGs are mostly from the perspective of enhancing its efficiency and working time. However, thermal comfort is the key factor that is often not considered. In fact, many situations may cause discomfort. For example, the inlet temperature of the liquid-cooling vest changes constantly resulting in the change of thermal states of the human body. So, it is very significative to develop a method to evaluate the performance of LCGs considering thermal comfort. In this paper, an uncomfortable time ratio was proposed to evaluate the performance of LCGs considering thermal comfort. A series of tests were conducted by a modified thermal manikin method to evaluate the thermal properties. According to the analyses, the duration working time was 82.77 min, while the uncomfortable time ratio was too large, up to 57.6%. It showed that the thermal comfort should be considered when optimizing the performance of LCGs. The influences of different parameters such as volume of ice, flowrate, inlet temperature on the performance of LCGs were investigated through orthogonal experimental design. The statistical analysis illustrated that the influence of the volume of ice on the uncomfortable time ratio is greater than that of flowrate and ambient temperature. It is concluded that this method is useful for the control and design of LCGs considering thermal comfort.

References

1.
Bartkowiak
,
G.
,
Dabrowska
,
A.
, and
Marszalek
,
A.
,
2017
, “
Assessment of an Active Liquid Cooling Garment Intended for Use in a Hot Environment
,”
Appl. Ergonom.
,
58
, pp.
182
189
.10.1016/j.apergo.2016.06.009
2.
Bartkowiak
,
G.
,
Dąbrowska
,
A.
, and
Marszałek
,
A.
,
2014
, “
Assessment of the Human Responses to the Influence of Personal Liquid Cooling System in the Hot Environment
,”
Int. J. Clothing Sci. Technol.
,
26
(
2
), pp.
145
163
.10.1108/IJCST-03-2013-0024
3.
Wang
,
F.
, and
Song
,
W.
,
2017
, “
An Investigation of Thermophysiological Responses of Human While Using Four Personal Cooling Strategies During Heatwaves
,”
J. Therm. Biol.
,
70
, pp.
37
44
.10.1016/j.jtherbio.2017.05.007
4.
Chowdhury
,
S.
,
Hamada
,
Y.
, and
Ahmed
,
K. S.
,
2017
, “
Experimental Evaluation of Subjective Thermal Perceptions for Sewing Activity
,”
Energy Build.
,
149
, pp.
450
462
.10.1016/j.enbuild.2017.05.006
5.
Delkumburewatte
,
G. B.
, and
Dias
,
T.
,
2012
, “
Wearable Cooling System to Manage Heat in Protective Clothing
,”
J. Text. Inst.
,
103
(
5
), pp.
483
489
.10.1080/00405000.2011.587647
6.
Flouris
,
A. D.
, and
Cheung
,
S. S.
,
2006
, “
Design and Control Optimization of Microclimate Liquid Cooling Systems Underneath Protective Clothing
,”
Ann. Biomed. Eng.
,
34
(
3
), pp.
359
372
.10.1007/s10439-005-9061-9
7.
Golbabaei
,
F.
,
Heydari
,
A.
,
Moradi
,
G.
,
Dehghan
,
H.
,
Moradi
,
A.
, and
Habibi
,
P.
,
2020
, “
The Effect of Cooling Vests on Physiological and Perceptual Responses: A Systematic Review
,”
Int. J. Occup. Saf. Ergonom.
, Epub, pp.
1
36
.10.1080/10803548.2020.1741251
8.
Nunneley
,
S. A.
,
1970
, “
Water Cooled Garments: A Review
,”
Space Life Sci.
,
2
(
3
), pp.
335
360
.10.1007/BF00929293
9.
Yazdi
,
M. M.
, and
Sheikhzadeh
,
M.
,
2014
, “
Personal Cooling Garments: A Review
,”
J. Textile Inst.
,
105
(
12
), pp.
1231
1250
.10.1080/00405000.2014.895088
10.
Hou
,
J.
,
Yang
,
Z.
,
Xu
,
P.
, and
Huang
,
G.
,
2019
, “
Design and Performance Evaluation of Novel Personal Cooling Garment
,”
Appl. Therm. Eng.
,
154
, pp.
131
139
.10.1016/j.applthermaleng.2019.02.013
11.
Zhao
,
D.
,
Lu
,
X.
,
Fan
,
T.
,
Wu
,
Y. S.
,
Lou
,
L.
,
Wang
,
Q.
,
Fan
,
J.
, and
Yang
,
R.
,
2018
, “
Personal Thermal Management Using Portable Thermoelectrics for Potential Building Energy Saving
,”
Appl. Energy
,
218
, pp.
282
291
.10.1016/j.apenergy.2018.02.158
12.
Guo
,
T.
,
Shang
,
B.
,
Duan
,
B.
, and
Luo
,
X.
,
2015
, “
Design and Testing of a Liquid Cooled Garment for Hot Environments
,”
J. Therm. Biol.
,
49–50
, pp.
47
54
.10.1016/j.jtherbio.2015.01.003
13.
Kim
,
D. E.
, and
LaBat
,
K.
,
2010
, “
Design Process for Developing a Liquid Cooling Garment Hood
,”
Ergonomics
,
53
(
6
), pp.
818
828
.10.1080/00140131003734229
14.
Kotagama
,
P.
,
Phadnis
,
A.
,
Manning
,
K. C.
, and
Rykaczewski
,
K.
,
2019
, “
Rational Design of Soft, Thermally Conductive Composite Liquid-Cooled Tubes for Enhanced Personal, Robotics, and Wearable Electronics Cooling
,”
Adv. Mater. Technol.
,
4
(
7
), p.
1800690
.10.1002/admt.201800690
15.
Shu
,
W.
,
Fan
,
Y.
,
Zhang
,
X.
,
Wang
,
J.
, and
Luo
,
X.
,
2020
, “
Thermal Sensation Modeling and Experiments for Liquid-Cooled Garments
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
10
(
3
), pp.
418
423
.10.1109/TCPMT.2019.2930727
16.
Xu
,
X. J.
,
Hexamer
,
M.
, and
Werner
,
J.
,
1999
, “
Multi-Loop Control of Liquid Cooling Garment Systems
,”
Ergonomics
,
42
(
2
), pp.
282
298
.10.1080/001401399185658
17.
Kaufman
,
J. W.
,
2001
, “
Estimated Ventilation Requirements for Personal Air-Cooling Systems
,”
Aviation Space Environ. Med.
,
72
(
9
), pp.
842
847
.https://pubmed.ncbi.nlm.nih.gov/11565822/
18.
Yi
,
W.
,
Zhao
,
Y.
, and
Chan
,
A. P. C.
,
2017
, “
Evaluation of the Ventilation Unit for Personal Cooling System (PCS)
,”
Int. J. Ind. Ergonom.
,
58
, pp.
62
68
.10.1016/j.ergon.2017.02.009
19.
Wang
,
T.
,
Wang
,
L.
,
Bai
,
L.
,
Lin
,
G.
,
Bu
,
X.
,
Liu
,
X.
, and
Xie
,
G.
,
2015
, “
Experimental Study on the Performance of a Liquid Cooling Garment With the Application of MEPCMS
,”
Energy Convers. Manage.
,
103
, pp.
943
957
.10.1016/j.enconman.2015.07.043
20.
Itani
,
M.
,
Ghaddar
,
N.
, and
Ghali
,
K.
,
2017
, “
Innovative PCM-Desiccant Packet to Provide Dry Microclimate and Improve Performance of Cooling Vest in Hot Environment
,”
Energy Convers. Manage.
,
140
, pp.
218
227
.10.1016/j.enconman.2017.03.011
21.
Burton
,
D. R.
,
1966
, “
Performance of Water Conditioned Suits
,”
Aerosp. Med.
,
37
(
5
), pp.
500
504
.https://europepmc.org/article/med/5935699
22.
Kong
,
M.
,
Dang
,
T. Q.
,
Zhang
,
J.
, and
Khalifa
,
H. E.
,
2017
, “
Micro-Environmental Control for Efficient Local Cooling
,”
Build. Environ.
,
118
, pp.
300
312
.10.1016/j.buildenv.2017.03.040
23.
ISO
,
2004
, “
Ergonomics-Evaluation of Thermal Strain by Physiological Measurements
,” ISO, Geneva, Switzerland, Standard No.
ISO 9886:2004
.https://www.iso.org/standard/34110.html
24.
E
,
J.
,
Han
,
D.
,
Qiu
,
A.
,
Zhu
,
H.
,
Deng
,
Y.
,
Chen
,
J.
,
Zhao
,
X.
,
Zuo
,
W.
,
Wang
,
H.
,
Chen
,
J.
, and
Peng
,
Q.
,
2018
, “
Orthogonal Experimental Design of Liquid-Cooling Structure on the Cooling Effect of a Liquid-Cooled Battery Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
508
520
.10.1016/j.applthermaleng.2017.12.115
25.
Chen
,
Q.
,
Hu
,
R.
, and
Luo
,
X. B.
,
2017
, “
A Statistical Study to Identify the Effects of Packaging Structures on Lumen Reliability of LEDs
,”
Microelectron. Reliab.
,
71
, pp.
51
55
.10.1016/j.microrel.2017.02.011
You do not currently have access to this content.