Abstract

Silicon carbide (SiC) wide bandgap power electronics are being applied in hybrid electric vehicle (HEV) and electrical vehicles (EV). The Department of Energy (DOE) has set target performance goals for 2025 to promote EV and HEV as a means of carbon emission reduction and long-term sustainability. Challenges include higher expectations on power density, performance, efficiency, thermal management, compactness, cost, and reliability. This study will benchmark state of the art silicon and SiC technologies. Power modules used in commercial traction inverters are analyzed for their within-package first-level interconnect methods, module architecture, and integration with cooling structure. A few power module package architectures from both industry-adopted standards and proposed patented technologies are compared in modularity and scalability for integration into inverters. The current trends of power module architectures and their integration into inverter are also discussed. The development of an eco-system to support the wide bandgap semiconductors-based power electronics is highlighted as an ongoing challenge.

References

1.
Office of Energy Statistics
,
2019
, “
Monthly Energy Review
,” U.S. Energy Information Administration, Office of Energy Statistics, U.S. DOE, Washington, DC, Report No.
DOE/EIA 0035
https://nangs.org/analytics/eia-monthly-energy-review-eng-pdf
2.
Office of Energy Efficiency & Renewable Energy,
2017
, “
Electrical and Electronics Technical Team Roadmap
,” U.S. DRIVE, Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability, Washington, DC. https://www.energy.gov/sites/prod/files/2017/11/f39/EETT%20Roadmap%2010-27-17.pdf
3.
Hefner
,
A. R.
, and
Beermann-Curtin
,
S.
,
2007
, “
Status of DARPA WBST High Power Electronics Program in SiC Device Development and Technology Transition
,”
GOMACtech Conference
,
Lake Buena Vista, FL
, Mar. 19–22, pp.
185
188
.https://www.nist.gov/publications/status-darpa-wbst-high-power-electronics-program-sic-device-development-and-technology
4.
Naval Research Laboratory
,
2019
, “
Power Electronics
,” Naval Research Laboratory, Washington, DC, accessed June, 20, 2020, https://www.nrl.navy.mil/estd/research-highlights/power-electronics 
5.
Army Research Laboratory
,
2019
, “
Distribution and Transfer
,” Army Research Laboratory, Adelphi, MD.
6.
National Renewable Energy Laboratory
,
2019
, “
Wide Bandgap Technology Enhances Performance of Electric-Drive Vehicles
,” National Renewable Energy Laboratory, Golden, CO, accessed June 20, 2020, https://www.nrel.gov/transportation/wide-bandgap-technology.html
7.
Oak Ridge National Laboratory
,
2019
, “
Power Electronics and Electric Machinery
,” Oak Ridge National Laboratory, Oak Ridge, TN, accessed June 20, 2020, https://www.ornl.gov/content/power-electronics-and-electric-machinery
8.
Power America Institute
, 2019, “
Technology Roadmap,” Power America Institute
, Raleigh, NC, accessed June 20, 2020, https://poweramericainstitute.org/about-poweramerica/technology-roadmap/ 
9.
Hitachi-Rail.com
,
2015
, “
SiC Hybrid Inverter
,” Hitachi-Rail.com, Chiyoca-Ku, Japan, accessed June 20, 2020, https://www.hitachi-rail.com/products/on-board/sic/index.html
10.
Toyota Motor Corporation
,
2015
, “
Toyota to Trial New SiC Power Semiconductor Technology
,” Toyota Motor Corporation, Aichi, Japan, accessed June 20, 2020, https://global.toyota/en/detail/5692153 
11.
J. P.
Morgan Global
,
2018
, “
Driving Into 2025: The Future of Electrical Vehicles
,” J. P. Morgan Global, New York, accessed June 20, 2020, https://www.jpmorgan.com/global/research/electric-vehicles
12.
Moxey
,
G.
,
2018
, “
Accelerating Adoption of SiC Power
,” Bodo's Power Systems, March 2018, pp. 76–78. 
13.
Toyota Motor Corporation,
2014
, “
Toyota Develops New SiC Power Semiconductor With Higher Efficiency
,” Toyota Motor Corporation, Aichi, Japan, Press Release, May 20, 2014.https://global.toyota/en/detail/2656842#:~:text=Toyota%20has%20installed%20the%20jointly,under%20the%20JC08%20test%20cycle.
14.
Lutz
,
J.
,
2003
, “Electric Vehicle Inverters,”
DOE Workshop on System Driven Approach to Inverter R&D
,
Baltimore, MD
, Apr. 23–24.https://www1.eere.energy.gov/solar/pdfs/sda_john_lutz.pdf
15.
Olejniczak
,
K. J.
,
2016
, “
Advanced Low Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electrical Vehicle Traction Drives
,” DOE Project Review, Project No.
EDT058
.https://www.energy.gov/sites/prod/files/2016/06/f32/edt058_olejniczak_2016_o_web.pdf
16.
Toshiba Electronic Devices & Storage Corporation
,
2018
, “
DC-AC Inverter Circuit
,” Application Note, Toshiba Electronic Devices & Storage Corporation, Tokyo, Japan.
17.
Hofmann
,
M.
, “
Evaluation of Potentials for Infineon SiC-MOSFETs in Automotive Inverter Applications—Part 2: Drive Cycle Efficiency
,” Fraunhofer IISB, Munchen, Germany.  https://www.infineon.com/dgdl/IISB_SiC_Studie_Part2_v2.pdf?fileId=5546d461580172fe0158249537a00222
18.
Kim
,
H.
,
Chen
,
H.
,
Zhu
,
J.
,
Maksimovic
,
D.
, and
Erickson
,
R.
,
2016
, “
Impact of 1.2 kV SiC-MOSFET EV Traction Inverter on Urban Driving
,”
IEEE Fourth Workshop on Wide Bandgap Power Electronics and Applications
(
WiPDA
), Fayetteville, AR, Nov. 7–9.10.1109/WiPDA.2016.7799913
19.
Narasimhan
,
S.
,
Karami
,
M.
,
Tallam
,
R.
, and
Das
,
M.
,
2017
, “
Evaluation of SiC Based Inverter Drives
,”
IEEE Fifth Workshop Wide Bandgap Power Devices and Applications
(
WiPDA
), Albuquerque, NM, Oct. 30–Nov. 1. 10.1109/WiPDA.2017.8170493
20.
Burress
,
T.
,
2013
, “
U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting
,” Oak Ridge National Laboratory,
Oak Ridge, TN
, Report No. APE006.
21.
Anwar
,
M.
,
Hasan
,
S. M.
,
Teimor
,
M.
,
Korich
,
M.
, and
Hayes
,
M.
,
2015
, “
Development of a Power Dense and Environmentally Robust Traction Power Inverter for the Second Generation Chevrolet VOLT Extended-Range EV
,”
IEEE Power Conversion Congress and Exposition
,
Montreal, QC
, Canada, Sept. 20–24.10.1109/ECCE.2015.7310502
22.
Barbarini
,
E.
,
2016
, “
Reverse Cost Analysis: Toyota Prius 4 PCU Power Module: Version 1
,” System Plus Consulting, Nantes, France. https://www.systemplus.fr/wp-content/uploads/2016/09/RS287_Toyota_Prius_IGBT_Module_Sample_2016_System_Plus_Consulting.pdf
23.
pntPower.com,
2015
, “
New Prius Has 33% Smaller Power Converter
,” pntPower.com, Lyon, France, accessed June 20, 2020, https://www.pntpower.com/new-prius-has-33-smaller-power-converter/
24.
Anwar
,
M.
,
Teimor
,
M.
,
Savagian
,
P.
,
Saito
,
R.
, and
Matsuo
,
T.
,
2016
, “
Compact and High Power Inverter for the Cadillac CT6 Rear Wheel Drive PHEV
,”
IEEE Power Conversion Congress and Exposition
, Milwaukee, MI, Sept. 18–22.10.1109/ECCE.2016.7854931
25.
Shimura
,
T.
,
Takagi
,
Y.
,
Matsushita
,
A.
, and
Yosei Hara
,
Y.
,
2016
, “
Power Module for Power Inverter
,” Patent No. US D759,589 S.
26.
pntPower.com,
2018
, “
About the SiC MOSFETs Modules in Tesla Model 3
,” pntPower.com, Lyon, France, accessed June 20, 2020, http://pntPower.com, https://www.pntpower.com/tesla-model-3-powered-by-st-microelectronics-sic-mosfets/
27.
Barbarini
,
E.
,
2018
, “
STMicroelectronics SiC Module—Tesla Model 3 Inverter: Version 1
,” System Plus Consulting, Nantes, France. https://www.systemplus.fr/wp-content/uploads/2018/06/SP18413-STM_SiC_Module_Tesla_Model_3_Inverter_sample-2.pdf
28.
pntPower.com, 2020, “
In a Tesla Model S, There is No IGBT Packaging Trick
,” pntPower.com, Lyon, France, accessed June 20, 2020, https://www.pntpower.com/on-tesla-electric-vehicles-semiconductor-packaging/
29.
JEDEC
, 2005, “JEDEC Global Standards for Microelectronics Industry,” JEDEC, Arlington, VA, Standard No.
TO247-E_01
.
30.
Infinion
,
2017
, “
To-247PLUS Description of the Packages and Assembly Guidelines
,” Infinion Application Note,
AN-2017-01 Rev 2.
https://www.infineon.com/dgdl/Infineon-Discrete_IGBT_in_TO-247PLUS-AN-v02_00-EN.pdf?fileId=5546d46249cd10140149e0c7fe9d56c7
31.
Tamba
,
A.
,
Ogawa
,
T.
, and
Yamada
,
K.
, “
Power Semiconductor Module and Motor Drive System
,” Patent No. US 6313598 B1.
32.
Yamashita
,
Y.
,
Hirano
,
K.
, and
Nakatani
,
S.
,
2004
, “
Power Module and Method of Manufacturing the Same
,” Patent No. US 6707671 B2.
33.
Tamba
,
A.
,
Nakamura
,
T.
,
Saito
,
R.
, and
Momma
,
N.
,
2003
, “
Water Cooled Inverter
,” Patent No. US 6621701 B2.
34.
Gerbsch
,
E. W.
, and
Taylor
,
R. S.
,
2006
, “
Electrically Isolated and Thermally Conductive Double Sided Pre-Packaged Component
,” Patent No. US 7095098 B2.
35.
Fillion
,
R. A.
,
Beaupre
,
R. A.
,
Elasser
,
A.
,
Wojnarowski
,
R. J.
, and
Carman
,
C. S.
,
2007
, “
Power Semiconductor Packaging Method and Structure
,” Patent No. US 7262444 B2.
36.
Casey
,
L. F.
,
Borowy
,
R. S.
,
Davis
,
G. H.
, and
Cornell
,
J. W.
, III
,
2010
, “
Double Sided Package for Power Module
,” Patent No. US 7,786,486 B2.
37.
Gerbsch
,
E. W.
,
2010
, “
Fluid Cooled Semiconductor Power Module Having Double Sided Cooling
,” Patent No. US 7834448 B2.
38.
Funakoshi
,
S.
,
Ishikawa
,
K.
, and
Soga
,
T.
,
2009
, “
Power Semiconductor Module
,” Patent No. US 7,547,966 B2.
39.
Mehratra
,
V.
,
2010
, “
High Temperature Stable SiC Device Interconnects and Packages Having Low Thermal Resistance
,” Patent No. US 7659614 B2.
40.
Delgado
,
E. C.
,
Beaupre
,
R. A.
,
Arthur
,
S. D.
,
Balch
,
E. W.
,
Durocher
,
K. M.
,
McConnelee
,
P. A.
, and
Fillion
,
R. A.
,
2011
, “
Power Semiconductor Module and Fabrication Method
,” Patent No. US 8049338 B2.
41.
Malhan
,
R. K.
,
MJohnson
,
C. M.
,
Butay
,
C.
,
Rashid
,
J.
, and
Udrea
,
F.
,
2011
, “
Assinee Denso Corporation, University of Cambridge, and University of Shelffield Power Electronics Packaging Having Two Substrates With Multiple Semiconductor Chips and Electronic Components
,” Patent No. US 7,999,369 B2.
42.
Shen
,
Z. J.
,
2012
, “
High Temperature Wirebondless Injection-Molded Ultra-Compact Hybrid Power Module
,” Patent No. US 8120153 B1.
43.
Beaupre
,
R. A.
,
Gowda
,
A. V.
,
Stevanovic
,
L. D.
, and
Solovitz
,
S. A.
,
2013
, “
Double Side Cooled Power Module With Power Overlay
,” Patent No. US 8358000 B2.
44.
Horiuchi
,
K.
,
Nishihara
,
A.
,
Hozoji
,
H.
,
Hiyoshi
,
M.
, and
Yokozuka
,
T.
,
2013
, “Semiconductor Power Module, Inverter, and Method of Manufacturing a Power Module,” Patent No. US 8.472,188 B2. 
45.
Kawanami
,
Y.
, and
Isobe
,
T.
,
2012
, “Power Semiconductor Module,” Patent No. US 8,279,605 B2.
46.
Liang
,
Z.
,
Marlino
,
L. D.
,
Ning
,
P.
, and
Want
,
F.
,
2015
, “
Power Module Packaging With Double Sided Planar Interconnection and Heat Exchangers
,” Patent No. US 9041183 B2.
47.
Das
,
M. K.
,
Callanan
,
R. J.
,
Lin
,
H.
, and
Palmour
,
J. W.
,
2015
, “
High Performance Power Module
,” Patent No. US9640617 B2.
48.
Otake
,
H.
, and
Hanada
,
T.
,
2015
, “
Power Module Semiconductor Device
,” Patent No. US 9147622 B2.
49.
Shimura
,
T.
,
Takagi
,
Y.
,
Matsushita
,
A.
, and
Hara
,
Y.
,
2016
, “
Power Module for Power Inverter
,” Patent No. US D759,589 S.
50.
Liang
,
Z.
,
2018
, “
Integrated Packaging of Multiple Double Sided Cooling Planar Bond Power Modules
,” Patent No. US 9, 941, 234 B2.
51.
Gowda
,
A.
,
Chauhan
,
S.
,
McConnelee
,
P.
,
Kapusta
,
C.
, and
Lee
,
Y.
,
2012
, “
Power Overlay Packaging Platform for High Performance Electronics
,”
Chip Scale Review
, 16(5), pp.
22
27
. https://www.researchgate.net/publication/308119668_Power_Overlay_Packaging_Platform_for_High_Performance_Electronics
52.
Yin
,
L.
,
Kapusta
,
C.
,
Gowda
,
A.
, and
Nagarkar
,
K.
,
2018
, “
A Wire-Bondless Packaging Platform for Silicon Carbide Power Semiconductor Devices
,”
ASME J. Electron. Packag.
,
140
(
3
), p.
031009
.10.1115/1.4040499
53.
Broughton
,
J.
,
Smat
,
V.
,
Tummala
,
R. R.
, and
Joshi
,
Y. K.
,
2018
, “
Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
040801
.10.1115/1.4040828
54.
Smakulski
,
P.
, and
Pietrowicz
,
S.
,
2016
, “
A Review of the Capabilities of High Heat Flux Removal by Porous Materials, Microchannels and Spray Cooling Techniques
,”
Appl. Therm. Eng.
,
104
(
2016
), pp.
636
646
.10.1016/j.applthermaleng.2016.05.096
55.
Keefe
,
M. O.
, and
Bennion
,
K.
,
2007
, “
A Comparison of Hybrid Electric Vehicle Power Electronics Cooling Options
,”
IEEE Vehicle Power and Propulsion Conference
,
Arlington, TX
, Sept. 9–12.10.1109/VPPC.2007.4544110
56.
Kimoto
,
K.
, and
Cooper
,
J.
,
2014
,
Fundamentals of Silicon Carbide Technology
, John
Wiley
and Sons, Inc., Hoboken, NJ.
57.
Lu
,
M.
,
2019
, “
Challenges in Materials and Processing to Implementation of Energy Efficient SiC Technology
,” AVS
66th International Symposium & Exhibition 2019
, American Vacuum Society,
Columbus, OH
, Oct. 20–25.
58.
Lu
,
M.
,
2019
, “
Enhanced Sintered Silver for SiC Wide Bandgap Power Electronics Integrated Package Module
,”
ASME J. Electron. Packag.
,
141
(
3
), p.
031002
.10.1115/1.4042984
59.
Toshiba Electronic Devices & Storage Corporation
,
2018
, “
DC-AC Inverter Circuit
,” Hitachi Application Note, Toshiba Electronic Devices & Storage Corporation, Tokyo, Japan.
60.
Horowitz
,
K.
, and
Remo
,
T.
,
2017
, “
A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives
,” National Renewal Energy Laboratory, Golden, CO, Report No.
NREL/TP-6A20-67694
.  https://www.nrel.gov/docs/fy17osti/67694.pdf
61.
Hitachi
,
2018
, “
Highly Durable Silicon Carbide (SiC) Power Semiconductor, 2018, ‘TED-MOS’ for Energy Saving in Electrical Motors
,” Hitachi, News Release,
Tokyo, Japan
.https://phys.org/news/2018-09-highly-durable-silicon-carbide-sic.html
62.
Infinion
,
2019
, “
An-HPDSC-Assembly Instructions on HybridPACK DSC
,” Infinion,
Neubiberg, Germany
, Application Note V1.22.
63.
On Semiconductor,
2019
, “
Automotive 750 V, 800 a Dual Side Cooling Half-Bridge Power Module
,” Rev 1, On Semiconductor,
Phoenix, AZ
, Publication Order No.
NVG800A75L4DSC/D.
https://www.onsemi.cn/PowerSolutions/document/NVG800A75L4DSC-D.PDF
64.
Hitachi Automotive Systems
,
2019
, “
Hitachi Automotive Systems' EV Inverter Adopted for the e-Tron, 2019, Audi's First Mass Production Electric Vehicle
,”
Hitachi Automotive Systems
, News Release,
Tokyo, Japan
.https://www.automotiveworld.com/news-releases/hitachi-automotive-systems-ev-inverter-adopted-for-the-e-tron-audis-first-mass-production-electric-vehicle/
You do not currently have access to this content.