Abstract

Laser machining is an inexpensive and fast alternative to conventional microfabrication techniques and has the capability to produce complicated three-dimensional (3D), hierarchical structures. It is especially important while performing rapid prototyping and quick design studies of extreme heat flux cooling devices. One of the major issues plaguing the use of laser micromachining to manufacture commercially usable devices, is the formation of debris during cutting and the difficulty in removing these debris efficiently after the machining process. For silicon substrates, this debris can interfere with surrounding components and cause problems during bonding with other substrates by preventing uniform conformal contact. This study delves deep into the challenges faced and methods to overcome them during laser micromachining-based manufacturing of such complicated 3D-manifolded microcooler structures. Specifically, this work summarizes several postprocess techniques that can be employed for complete debris removal during etching of silicon samples using an Nd/YVO4 ultraviolet (UV) laser, detailing the advantages and drawbacks of each approach. A method that was found to be particularly promising to achieve very smooth surfaces with almost complete debris removal was the use of polydimethylsiloxane (PDMS) as a high-rigidity protective coating. In the process, a novel technique to strip PDMS from silicon surface was also developed. The result of this study is valuable to the microfabrication industry where smooth and clean substrate surfaces are highly desirable and it will significantly improve the process of using UV lasers to create microstructures for commercial applications as well as in a research environment.

References

1.
Useller
,
J. W.
, “
Clean Room Technology
,” NASA, Washington, DC, Report No.
NASA SP-5074
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690024397.pdf
2.
Dowding
,
C.
, and
Borman
,
A.
,
2015
, “
22 - Laser-Initiated Ablation of Materials
,” Laser Surface Engineering, J. Lawrence and D. G. Waugh, eds., Woodhead Publishing Series in Electronic and Optical Materials, Elsevier, Amsterdam, The Netherlands, pp.
523
546
.10.1016/B978-1-78242-074-3.00022-2
3.
Brown
,
M. S.
, and
Arnold
,
C. B.
, 2010, “
Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification—Chapter 4
,” K. Sugioka, M. Meunier, and A. Pique, eds., Laser Precision Microfabrication (Springer Series in Materials Science), Vol.
135
,
Springer
, Berlin.10.1007/978-3-642-10523-4_4
4.
Semenic
,
T.
, and
Catton
,
I.
,
2009
, “
Experimental Study of Biporous Wicks for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5113
5121
.10.1016/j.ijheatmasstransfer.2009.05.005
5.
Wang
,
Z.
,
Zhao
,
J.
,
Bagal
,
A.
,
Dandley
,
E. C.
,
Oldham
,
C. J.
,
Fang
,
T.
,
Parsons
,
G. N.
, and
Chang
,
C.
,
2016
, “
Wicking Enhancement in Three-Dimensional Hierarchical Nanostructures
,”
Langmuir
,
32
(
32
), pp.
8029
8033
.10.1021/acs.langmuir.6b01864
6.
Su
,
K. C.
,
Lu
,
H. H.
,
Chen
,
S. H.
,
Tsai
,
C. D.
,
Chou
,
Y. C.
,
Wu
,
W. J.
,
Wu
,
G. Q.
, and
Moore
,
J. C.
,
2007
, “
A Novel Water-Washable Coating for Avoiding Contamination During Dry Laser Dicing Operations
,”
CS MANTECH Conference
, Austin, TX, May 14–17, pp.
317
320
.https://www.researchgate.net/publication/267943598_A_Novel_Water-Washable_Coating_for_Avoiding_Contamination_During_Dry_Laser_Dicing_Operations
7.
Zhu
,
B.
,
Jin
,
Y.
,
Hu
,
X.
,
Zheng
,
Q.
,
Zhang
,
S.
,
Wang
,
Q.
, and
Zhu
,
J.
,
2017
, “
Poly(Dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
,”
Adv. Mater.
,
29
(
2
), p.
1603755
.10.1002/adma.201603755
8.
Schaeffer
,
R. D.
,
Kardos
,
G.
,
Murphy
,
S.
, and
Grossman
,
D.
,
2008
, “
Using Short-Pulse Lasers for Micromachining
,”
Industrial Laser Solutions.
https://www.industrial-lasers.com/micromachining/article/16485725/using-shortpulse-lasers-for-micromachining
9.
Lizotte
,
T.
, Dagher, J., and Ohar, O.,
2002
, “
Removal of UV YAG or Excimer Laser Debris After Microvia Drilling
,”
Advanced Packaging
.
10.
Thibault
,
F.
, and
van Nunen
,
J.
,
2018
, “
Cleaner Cuts for Semiconductor Packaging
,”
Laser Technik J.
,
15
(
1
), pp.
22
25
.10.1002/latj.201800001
11.
Sakuma
,
K.
,
Hasegawa
,
S.
,
Takahashi
,
H.
,
Ota
,
M.
, and
Hayasaki
,
Y.
,
2015
, “
Holographic Laser Sweeper for in-Process Debris Removal
,”
Appl. Phys. B
,
119
(
3
), pp.
533
538
.10.1007/s00340-015-6011-6
12.
Schaeffer
,
R. D.
, and
Kardos
,
G.
,
2008
, “
Post-Laser Processing Cleaning Techniques
,”
Industrial Laser Solutions
.https://www.industrial-lasers.com/drilling/article/16485770/postlaser-processing-cleaning-techniques
13.
Sun
,
J.
, and
Longtin
,
J. P.
,
2001
, “
Ultrafast Laser Micromachining With a Liquid Film
,”
Proceedings of ICALEO
, Jacksonville, FL, Oct.
15
18
.10.2351/1.5059828
14.
Coyne,
E., Mannion, P.
,
O'Connor,
G. M.
,
Favre
,
S.
, and
Glynn
,
T. J.
,
2005
, “
Scope for Electric Field Assisted Removal of Ablated Debris From Laser Machined Features in Silicon
,”
Proceedings of Photon Processing in Microelectronics and Photonics IV
, Vol.
5713
, San Jose, CA, Apr. 12.10.1117/12.594529
15.
Jung
,
K. W.
,
Cho
,
E.
,
Lee
,
H.
,
Kharangate
,
C. R.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2020
, “
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs)—Part 1: Experimental Study of Single-Phase Cooling Performance With R-245fa
,”
ASME J. Electron. Packag.
, Epub.10.1115/1.4047846
16.
Jung
,
K. W.
,
Hazra
,
S.
,
Kwon
,
H.
,
Piazza
,
A.
,
Jih
,
E.
,
Asheghi
,
M.
,
Gupta
,
M. P.
,
Degner
,
M.
, and
Goodson
,
K. E.
,
2020
, “
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs)—Part 2: Parametric Study of EMMCs for High Heat Flux (∼1 kW/cm2) Power Electronics Cooling
,”
ASME J. Electron. Packag.
, Epub.10.1115/1.4047883
17.
Mai
,
T. A.
,
2008
, “
Toward Debris-Free Laser Micromachining
,”
Ind. Laser Solutions
,
23
, p.
1
.https://www.industrial-lasers.com/micromachining/article/16487719/toward-debrisfree-laser-micromachining
18.
Williams
,
K. R.
,
Gupta
,
K.
, and
Wasilik
,
M.
,
2003
, “
Etch Rates for Micromachining Processing—Part II
,”
J. Microelectromech. Syst.
,
12
(
6
), pp.
761
768
.10.1109/JMEMS.2003.820936
19.
Silvennoinen
,
M.
,
2014
, “
Precise material processing with Spatial Light Modulator—Controlled Femtosecond Laser Beam
,”
Dissertations in Forestry and Natural Sciences
, University of Eastern Finland, Eastern Finland, Finland.https://epublications.uef.fi/pub/urn_isbn_978-952-61-1541-2/urn_isbn_978-952-61-1541-2.pdf
You do not currently have access to this content.