Abstract

The share of equipment and power use in smaller data centers (DCs) is comparable with that of more massive counterparts. However, they grabbed less attention in the literature despite being less energy-efficient. This study highlights the challenges of setting up a computational fluid dynamics (CFD) model of a 180-m2 small-size high-performance computing (HPC) DC and the validation procedure leading to a reasonably accurate model for the investigation of the thermal environment and potential energy efficiency improvements. Leaky floors, uneven placement of computing equipment and perforated tiles preventing separation of hot and cold air, low-temperature operation, and excessive cooling capacity and fan power were identified sources of energy inefficiency in the DC. Computational fluid dynamics model predictions were gradually improved by using experimental measurements for various boundary conditions (BCs) and detailed geometrical representation of large leakage openings. Eventually, the model led to predictions with an error of less than 1 °C at the rack inlet and less than 5 °C at the rack outlet. The ultimate objective was to use the validated CFD model to test various energy efficiency measures in the form of operational or design changes in line with the best practices. Impact of leakage between the raised floor and the room, reduced airflow rate, cold-aisle and hot-aisle separation, workload consolidation, and higher temperature operation were among the phenomena tested by using the validated CFD model. The estimated power usage effectiveness (PUE) value reduced from 1.95 to 1.40 with the proposed energy efficiency measures.

References

1.
ISO/IEC 30134-2:2016,
2016
, “Information Technology—Data Centres—Key Performance Indicators—Part 2: Power Usage Effectiveness (PUE),”
International Organization for Standardization
,
Geneva, Switzerland
, accessed July 27, 2020, https://www.iso.org/standard/63451.html
2.
Shehabi
,
A.
,
Smith
,
S.
,
Sartor
,
D. A.
,
Brown
,
R. E.
,
Herrlin
,
M.
,
Koomey
,
J. G.
,
Masanet
,
E. R.
,
Horner
,
N.
,
Azevedo
,
I. L.
, and
Lintner
,
W.
,
2016
, “
United States Data Center Energy Usage Report
,”
Lawrence Berkeley National Laboratory
.,
Berkeley, CA
, Report No. LBNL-1005775.
3.
Iyengar
,
M. R. R.
,
Schmidt
,
H.
,
Hamann
, and
VanGilder
,
J. W.
,
2007
, “
Comparison Between Numerical and Experimental Temperature Distributions in a Small Data Center Test Cell
,”
ASME Paper No. IPACK2007-33508
.10.1115/IPACK2007-33508
4.
Abdelmaksoud
,
W.
,
Khalifa
,
H. E.
,
Dang
,
T. Q.
,
Schmidt
,
R. R.
, and
Iyengar
,
M.
,
2010
, “
Improved CFD Modeling of a Small Data Center Test Cell
,”
Intersociety Conference on Thermal Phenomena (ITherm)
,
Las Vegas, NV
, June 2–5, pp.
1
9
.10.1109/ITHERM.2010.5501425
5.
Abdelmaksoud
,
W.
,
2012
, “Experimental and Numerical Investigations of the Thermal Environment in Air-Cooled Data Centers,”
Ph.D. dissertation
,
Syracuse University
,
New York
.https://surface.syr.edu/mae_etd/71
6.
Alkharabsheh
,
S.
,
Sammakia
,
B. G.
, and
Shrivastava
,
S.
,
2015
, “
Experimentally Validated CFD Model for a Data Center With Cold Aisle Containment
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021010
.10.1115/1.4029344
7.
Shrivastava
,
S. K.
,
Iyengar
,
M.
,
Sammakia
,
B. G.
,
Schmidt
,
R. R.
, and
Vangilder
,
J. W.
,
2006
, “
Experimental-Numerical Comparison for a High-Density Data Center: Hot Spot Fluxes in Excess of 500 W/ft2
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM '06)
,
San Diego, CA
, May 30–June 2, pp.
402
411.
10.1109/TCAPT.2008.2011558
8.
Schmidt
,
R.
,
Iyengar
,
M.
,
Beaty
,
D.
, and
Shrivastava
,
S. K.
,
2005
, “
Thermal Profile of a High Density Data Center—Hot Spot Heat Fluxes of 512 Watts/ft2
,”
Proceedings of the ASHRAE Annual Meeting 2005, Symposium
, Jun. 25–29,
Denver, CO
, Paper No. DE-05-11.
9.
Cho
,
J.
, and
Kim
,
B. S.
,
2011
, “
Evaluation of Air Management System's Thermal Performance for Superior Cooling Efficiency in High-Density Data Centers
,”
Energy Build.
,
43
(
9
), pp.
2145
2155
.10.1016/j.enbuild.2011.04.025
10.
Schmidt
,
R. R.
,
Iyengar
,
M.
, and
Caricari
,
J.
,
2010
, “
Data Center Housing High Performance Supercomputer Cluster: Above Floor Thermal Measurements Compared to CFD Analysis
,”
ASME J. Electron. Packag.
,
132
(
2
), p.
021009
.10.1115/1.4001871
11.
Radmehr
,
A.
,
Fitzpatrick
,
J.
, and
Karki
,
K.
,
2018
, “
Optimizing Cooling Performance of a Data Center: Using CFD Simulation and Measurements
,”
ASHRAE J.
,
60–67
, pp.
22
30
.https://www.ashrae.org/technical-resources/ashrae-journal/featured-articles/optimizing-cooling-performance-of-a-data-center-using-cfd-simulation-and-measurements
12.
Fakhim
,
B.
,
Behnia
,
M.
,
Armfield
,
S. W.
, and
Srinarayana
,
N.
,
2011
, “
Cooling Solutions in an Operational Data Centre: A Case Study
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2279
2291
.10.1016/j.applthermaleng.2011.03.025
13.
Choo
,
K.
,
Galante
,
R. M.
, and
Ohadi
,
M. M.
,
2014
, “
Energy Consumption Analysis of a Medium-Size Primary Data Center in an Academic Campus
,”
Energy Build.
,
76
, pp.
414
421
.10.1016/j.enbuild.2014.02.042
14.
Deshmukh
,
A. N.
,
Pawar
,
R. S.
,
Kulkarni
,
S. S.
,
Kumar
,
V.
,
Joshi
,
S. K.
, and
Chaudhari
,
M. B.
,
2017
, “
CFD Simulation Studies of High Performance Computing (HPC) Facilities
,”
Fluid Mechanics and Fluid Power—Contemporary Research. Lecture Notes in Mechanical Engineering
,
A. K.
Saha
,
D.
Das
,
R.
Srivastava
,
P. K.
Panigrahi
, and
K.
Muralidhar
, eds.,
Springer
,
New Delhi
, pp.
251
267
.
15.
Ganeshalingam
,
M. A.
,
Shehabi
,
L. B.
, and
Desroches
,
2017
, “
Shining a Light on Small Data Centers
,”
U.S. Lawrence Berkeley National Laboratory
,
Berkeley, CA
, Report No. LBNL-2001025.https://eta.lbl.gov/publications/shining-light-small-data-centers-us
16.
Carbó
,
A.
,
Oró
,
E.
,
Salom
,
J.
,
Canuto
,
M.
,
Macías
,
M.
, and
Guitart
,
J.
,
2016
, “
Experimental and Numerical Analysis for Potential Heat Reuse in Liquid Cooled Data Centres
,”
Energy Convers. Manage.
,
112
, pp.
135
145
.10.1016/j.enconman.2016.01.003
17.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
18.
Arghode
,
V. K.
,
Woodruff
,
G. W.
, and
Joshi
,
Y.
,
2016
, “
Modified Body Force Model for Air Flow Through Perforated Floor Tiles in Data Centers
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
031002
.10.1115/1.4033464
19.
ANSYS, 2017,
Chapter 6: Cell Zone and Boundary Conditions, Fluent 18.1 User Guide,
ANSYS
,
Canonsburg, PA
.
20.
Mark
,
S.
,
2015
, “
Chapter 17: Computational Fluid Dynamics Applications in Data Centers
,”
Data Center Handbook
,
Wiley
,
Hoboken, NJ
,
H.
Geng
, ed., pp.
313
341
.
21.
Patterson
,
M. K.
,
2008
, “
The Effect of Data Center Temperature on Energy Efficiency
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Orlando, FL
, May 28–31, pp.
1167
1174
.10.1109/ITHERM.2008.4544393
22.
ASHRAE
,
2015
,
Thermal Guidelines for Data Processing Environments
, 4th ed.,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
23.
Idelchik
,
I. E.
,
1994
,
Handbook of Hydraulic Resistance
,
Begell House
,
Orlando, FL
.
24.
Wang
,
J.
,
Zhang
,
Q.
, and
Yu
,
Y.
,
2016
, “
An Advanced Control of Hybrid Cooling Technology for Telecommunication Base Stations
,”
Energy Build.
,
133
, pp.
172
184
.10.1016/j.enbuild.2016.08.090
You do not currently have access to this content.