Abstract

Pluggable optoelectronic transceiver modules are widely used in the fiber-optic communication infrastructure. It is essential to mitigate thermal contact resistance between the high-power optical module and its riding heat sink in order to maintain the required operation temperature. The pluggable nature of the modules requires dry contact thermal interfaces that permit repeated insertion–disconnect cycles under low compression pressures (∼10 to 100 kPa). Conventional wet thermal interface materials (TIM), such as greases, or those that require high compression pressures, are not suitable for pluggable operation. Here, we demonstrate the use of compliant microstructured TIM to enhance the thermal contact conductance between an optical module and its riding heat sink under a low compression pressure (20 kPa). The metallized and polymer-coated structures are able to accommodate the surface nonflatness and microscale roughness of the mating surface while maintaining a high effective thermal conductance across the thickness. This dry contact TIM is demonstrated to maintain reliable thermal performance after 100 plug-in and plug-out cycles while under compression.

References

1.
Keiser
,
G.
,
2003
,
Optical Fiber Communications
,
Wiley Encyclopedia of Telecommunications
, Hoboken, NJ.
2.
Agrawal
,
G. P.
,
2012
,
Fiber-Optic Communication Systems
, Vol.
222
,
Wiley
, Hoboken, NJ.
3.
Implementation Agreement for Thermal Interface Specification for Pluggable Optics Modules
,
2015
, “Optical Internetworking Forum,”
OIF-Thermal-01.0
, Optical Internetworking Forum, Fremont, CA.https://www.oiforum.com/wp-content/uploads/2019/01/OIF-Thermal-01.0_IA.pdf
4.
Sheltami
,
K.
, and
Refai-Ahmed
,
G.
,
2002
, “
Thermal Management of Telecommunication Optical Module in Forced Convection Mode
,”
ITherm 2002 Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, May 30–June 1, pp.
726
729
.10.1109/ITHERM.2002.1012527
5.
Marotta
,
E. E.
, and
Hana
,
B.
,
1998
, “
Thermal Control of Interfaces for Microelectronic Packaging
,”
MRS Online Proceedings
, Library Archive 515, Boston, MA, Nov. 30–Dec. 4, Vol.
515
, p.
215
.10.1557/PROC-515-215
6.
Atluri
,
V. P.
,
Mahajan
,
R. V.
,
Patel
,
P. R.
,
Mallik
,
D.
,
Tang
,
J.
,
Wakharkar
,
V. S.
,
Chrysler
,
G. M.
,
Chiu
,
C. P.
,
Choksi
,
G. N.
, and
Viswanath
,
R. S.
,
2003
, “
Critical Aspects of High-Performance Microprocessor Packaging
,”
MRS Bull.
,
28
(
1
), pp.
21
34
.10.1557/mrs2003.14
7.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
,
Joshi
,
Y.
,
Sammakia
,
B.
,
Myers
,
B. A.
,
Chorosinski
,
L.
,
Baelmans
,
M.
,
Sathyamurthy
,
P.
, and
Raad
,
P. E.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.10.1109/TCAPT.2008.2001197
8.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.10.1109/JPROC.2006.879796
9.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.10.1016/0017-9310(69)90011-8
10.
Madhusudana
,
C. V.
, and
Ling
,
F. F.
,
1996
,
Thermal Contact Conductance
,
Springer-Verlag
,
New York
, pp.
1
43
.
11.
Yeh
,
L. T.
, and
Chu
,
R. C.
,
2002
,
Thermal Management of Microelectronic Equipment
,
ASME
,
New York
, pp. B46–B48.10.1115/1.801683
12.
Antonetti
,
V. W.
, and
Yovanovich
,
M. M.
,
1985
, “
Enhancement of Thermal Contact Conductance by Metallic Coatings: Theory and Experiment
,”
ASME J. Heat Transfer
,
107
(
3
), pp.
513
519
.10.1115/1.3247454
13.
Lambert
,
M. A.
, and
Fletcher
,
L. S.
,
1993
, “
Review of the Thermal Contact Conductance of Junctions With Metallic Coatings and Films
,”
J. Thermophys. Heat Transfer
,
7
(
4
), pp.
547
554
.10.2514/3.459
14.
Merrill
,
C. T.
, and
Garimella
,
S. V.
,
2011
, “
Measurement and Prediction of Thermal Contact Resistance Across Coated Joints
,”
Exp. Heat Transfer
,
24
(
2
), pp.
179
200
.10.1080/08916152.2010.503311
15.
Bar-Cohen
,
A.
,
Matin
,
K.
, and
Narumanchi
,
S.
,
2015
, “
Nanothermal Interface Materials: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
.10.1115/1.4031602
16.
McNamara
,
A. J.
,
Joshi
,
Y.
, and
Zhang
,
Z. M.
,
2012
, “
Characterization of Nanostructured Thermal Interface Materials—A Review
,”
Int. J. Therm. Sci.
,
62
, pp.
2
11
.10.1016/j.ijthermalsci.2011.10.014
17.
Hansson
,
J.
,
Nilsson
,
T. M.
,
Ye
,
L.
, and
Liu
,
J.
,
2018
, “
Novel Nanostructured Thermal Interface Materials: A Review
,”
Int. Mater. Rev.
,
63
(
1
), pp.
22
45
.10.1080/09506608.2017.1301014
18.
Ishida
,
H.
, and
Rimdusit
,
S.
,
1998
, “
Very High Thermal Conductivity Obtained by Boron Nitride-Filled Polybenzoxazine
,”
Thermochim. Acta
,
320
(
1–2
), pp.
177
186
.10.1016/S0040-6031(98)00463-8
19.
Lin
,
W.
,
Moon
,
K.
, and
Wong
,
C. P.
,
2009
, “
A Combined Process of in Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube–Polymer Nanocomposites: Toward Applications as Thermal Interface Materials
,”
Adv. Mater.
,
21
(
23
), pp.
2421
2424
.10.1002/adma.200803548
20.
Shahil
,
K. M. F.
, and
Balandin
,
A. A.
,
2012
, “
Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials, Solid State Communications, Exploring Graphene
,”
Recent Res. Adv.
,
152
(
15
), pp.
1331
1340
.10.1016/j.ssc.2012.04.034
21.
Pashayi
,
K.
,
Fard
,
H. R.
,
Lai
,
F.
,
Iruvanti
,
S.
,
Plawsky
,
J.
, and
Borca-Tasciuc
,
T.
,
2014
, “
Self-Constructed Tree-Shape High Thermal Conductivity Nanosilver Networks in Epoxy
,”
Nanoscale
,
6
(
8
), pp.
4292
4296
.10.1039/C3NR06494H
22.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.10.1038/354056a0
23.
Marconnet
,
A. M.
,
Panzer
,
M. A.
, and
Goodson
,
K. E.
,
2013
, “
Thermal Conduction Phenomena in Carbon Nanotubes and Related Nanostructured Materials
,”
Rev. Mod. Phys.
,
85
(
3
), pp.
1295
1326
.10.1103/RevModPhys.85.1295
24.
Wasniewski
,
J. R.
,
Altman
,
D. H.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
,
Bulusu
,
A.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2012
, “
Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a High Accuracy 1D Steady-State Technique
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
020901
.10.1115/1.4005909
25.
Lin
,
W.
,
Zhang
,
R.
,
Moon
,
K. S.
, and
Wong
,
C. P.
,
2010
, “
Synthesis of High-Quality Vertically Aligned Carbon Nanotubes on Bulk Copper Substrate for Thermal Management
,”
IEEE Trans. Adv. Packag.
,
33
(
2
), pp.
370
376
.10.1109/TADVP.2009.2034335
26.
Feng
,
B.
,
Faruque
,
F.
,
Bao
,
P.
,
Chien
,
A.
,
Kumar
,
S.
, and
Peterson
,
G. P.
,
2013
, “
Double-Sided Tin Nanowire Arrays for Advanced Thermal Interface Materials
,”
Appl. Phys. Lett.
,
102
(
9
), p.
093105
.10.1063/1.4791575
27.
Barako
,
M. T.
,
Roy-Panzer
,
S.
,
English
,
T. S.
,
Kodama
,
T.
,
Asheghi
,
M.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2015
, “
Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites
,”
ACS Appl. Mater. Interfaces
,
7
(
34
), pp.
19251
19259
.10.1021/acsami.5b05147
28.
Shaddock
,
D.
,
Weaver
,
S.
,
Chasiotis
,
I.
,
Shah
,
B.
, and
Zhong
,
D.
,
2011
, “
Development of a Compliant Nanothermal Interface Material
,”
ASME
Paper No. IPACK2011-52015.10.1115/IPACK2011-52015
29.
Kempers
,
R.
,
Lyons
,
A. M.
, and
Robinson
,
A. J.
,
2014
, “
Modeling and Experimental Characterization of Metal Microtextured Thermal Interface Materials
,”
ASME J. Heat Transfer
,
136
(
1
), p.
011301
.10.1115/1.4024737
30.
Cui
,
J.
,
Wang
,
J.
,
Weibel
,
J. A.
, and
Pan
,
L.
,
2019
, “
A Compliant Microstructured Thermal Interface Material for Dry and Pluggable Interfaces
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1075
1082
.10.1016/j.ijheatmasstransfer.2018.11.074
31.
Cui
,
J.
,
Wang
,
J.
,
Zhong
,
Y.
,
Pan
,
L.
, and
Weibel
,
J. A.
,
2018
, “
Metallized Compliant Three-Dimensional Microstructures for Dry Contact Thermal Conductance Enhancement
,”
J. Micromech. Microeng.
,
28
(
5
), p.
055005
.10.1088/1361-6439/aaaf2e
32.
Wasielewski
,
R.
,
Cui
,
J.
,
Pan
,
L.
, and
Weibel
,
J. A.
,
2016
, “
Fabrication of Compliant Three-Dimensional Microstructures as Surface Coatings for Dry Contact Thermal Conductance Enhancement
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Las Vegas, NV
, May 31–June 3, pp.
134
39
.10.1109/ITHERM.2016.7517540
33.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators A
,
121
(
1
), pp.
113
120
.10.1016/j.sna.2004.12.011
34.
Zheng
,
X.
,
Deotte
,
J.
,
Alonso
,
M. P.
,
Farquar
,
G. R.
,
Weisgraber
,
T. H.
,
Gemberling
,
S.
,
Lee
,
H.
,
Fang
,
N.
, and
Spadaccini
,
C. M.
,
2012
, “
Design and Optimization of a Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
125001
.10.1063/1.4769050
35.
Bao
,
Y.
,
He
,
C.
,
Zhou
,
F.
,
Stuart
,
C.
, and
Sun
,
C.
,
2012
, “
A Realistic Design of Three-Dimensional Full Cloak at Terahertz Frequencies
,”
Appl. Phys. Lett.
,
101
(
3
), p.
031910
.10.1063/1.4735133
36.
Lin
,
D.
,
Nian
,
Q.
,
Deng
,
B.
,
Jin
,
S.
,
Hu
,
Y.
,
Wang
,
W.
, and
Cheng
,
G. J.
,
2014
, “
Three-Dimensional Printing of Complex Structures: Man Made or Toward Nature?
,”
ACS Nano
,
8
(
10
), pp.
9710
9715
.10.1021/nn504894j
37.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.10.1126/science.1255908
38.
Soukoulis
,
C. M.
, and
Wegener
,
M.
,
2011
, “
Past Achievements and Future Challenges in the Development of Three-Dimensional Photonic Metamaterials
,”
Nat. Photonics
,
5
(
9
), pp.
523
530
.10.1038/nphoton.2011.154
You do not currently have access to this content.