Abstract

Due to the inherently low adhesive strength and structural integrity of polymer thermal interface materials (TIMs), they present a likely point of failure when succumbed to thermomechanical stresses in electronics packaging. Herein, we present a methodology to quantify TIM degradation through an accelerated and repeatable mechanical cycling technique. The testing apparatus incorporated a steady-state thermal conductivity measurement system, consistent with ASTM 5470-06, with added displacement actuation and force sensing to provide controlled cyclic loading between −20 N and 20 N. Additionally, a novel optical technique was utilized to observe void formation, pump-out, and dry-out behavior during cycling, in order to correlate the thermal performance with physical behaviors of different TIMs under cyclic stress. Of the two different pastes analyzed, cyclic testing was found to degrade the thermal performance of the less viscous TIM by increasing its interfacial resistance. Optical qualitative measurements revealed the breakdown of the TIM structure at the interface, which indicated the formation of voids due to TIM degradation. Applying this testing method for future TIM development could help in optimizing TIM structure for particular package applications.

References

References
1.
Razeeb
,
K. M.
,
Dalton
,
E.
,
Cross
,
G. L. W.
, and
Robinson
,
A. J.
,
2018
, “
Present and Future Thermal Interface Materials for Electronic Devices
,”
Int. Mater. Rev.
,
63
(
1
), pp.
1
21
.10.1080/09506608.2017.1296605
2.
Hansson
,
J.
,
Nilsson
,
T. M. J.
,
Ye
,
L. L.
, and
Liu
,
J.
,
2018
, “
Novel Nanostructured Thermal Interface Materials: A Review
,”
Int. Mater. Rev.
,
63
(
1
), pp.
22
45
.10.1080/09506608.2017.1301014
3.
Due
,
J.
, and
Robinson
,
A. J.
,
2013
, “
Reliability of Thermal Interface Materials: A Review
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
455
463
.10.1016/j.applthermaleng.2012.06.013
4.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M. C.
,
Johnson
,
R. W.
,
Nguyen
,
J. L.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2015
, “
Investigation Into the Application of Low Melting Temperature Alloys as Wet Thermal Interface Materials
,”
Int. J. Heat Mass Transfer
,
85
, pp.
996
1002
.10.1016/j.ijheatmasstransfer.2015.02.029
5.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1658
1666
.10.1016/j.ijheatmasstransfer.2005.09.039
6.
Wunderle
,
B.
,
Heilmann
,
J.
,
May
,
D.
,
Arnold
,
J.
,
Hirscheider
,
J.
,
Bauer
,
J.
,
Schacht
,
R.
,
Vogel
,
J.
, and
Abo Ras
,
M.
,
2017
, “
Modelling and Characterisation of a Grease Pump-Out Test Stand and Its Use for Accelerated Stress Testing of Thermal Greases
,” 23rd International Workshop on Thermal Investigations of ICs and Systems (
THERMINIC
),
Amsterdam, The Netherlands
, Sept. 27–29, pp.
1
6
.10.1109/THERMINIC.2017.8233806
7.
DeVoto
,
D.
,
Paret
,
P.
,
Mihalic
,
M.
,
Narumanchi
,
S.
,
Bar-Cohen
,
A.
, and
Matin
,
K.
,
2014
, “
Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs)
,”
14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 27–30, pp.
409
417
.10.1109/ITHERM.2014.6892310
8.
Warzoha
,
R. J.
, and
Donovan
,
B. F.
,
2017
, “
High Resolution Steady-State Measurements of Thermal Contact Resistance Across Thermal Interface Material Junctions
,”
Rev. Sci. Instrum.
,
88
(
9
), p.
094901
.10.1063/1.5001835
9.
Sponagle
,
B.
, and
Groulx
, G.
,
2012
, “
Characterization of Thermal Interface Materials Using a Steady State Experimental Method
,”
ASME
Paper No. HT2012-58262.10.1115/HT2012-58262
10.
Székely
,
V.
,
Vass-Várnai
,
A.
, and
Kollár
,
E.
,
2010
, “
Re-Design and Validation of the ‘STATIM’ TIM Tester
,”
16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)
,
Barcelona, Spain
, Oct. 6–8, pp.
1
4
.
11.
Chen
,
C. I.
,
Ni
,
C. Y.
,
Chang
,
C. M.
,
Liu
,
D. S.
,
Pan
,
H. Y.
, and
Yuan
,
T. D.
,
2008
, “
Thermal Characterization of Thermal Interface Materials
,”
Exp. Tech.
,
32
(
3
), pp.
48
52
.10.1111/j.1747-1567.2007.00212.x
12.
DeVoto
,
D.
,
Major
,
J.
,
Paret
,
P.
,
Blackman
,
G. S.
,
Wong
,
A.
, and
Meth
,
J. S.
,
2017
, “
Degradation Characterization of Thermal Interface Greases
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Orlando, FL
, May 30–June 2, pp.
394
399
.10.1109/ITHERM.2017.7992501
13.
Marbut
,
C. J.
,
Montazeri
,
M.
, and
Huitink
,
D. R.
,
2018
, “
Rapid Solder Interconnect Fatigue Life Test Methodology for Predicting Thermomechanical Reliability
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
3
), pp.
412
421
.10.1109/TDMR.2018.2851541
14.
Gowda
,
A.
,
Esler
,
D.
,
Paisner
,
S. N.
,
Tonapi
,
S.
,
Nagarkar
,
K.
, and
Srihari
,
K.
,
2005
, “
Reliability Testing of Silicone-Based Thermal Greases [IC Cooling Applications]
,”
Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium
,
San Jose, CA
, Mar. 15–17, pp.
64
71
.10.1109/STHERM.2005.1412160
15.
Chia-Pin
,
C.
,
Biju
,
C.
,
Mello
,
K.
, and
Kelley
,
K.
,
2001
, “
An Accelerated Reliability Test Method to Predict Thermal Grease Pump-Out in Flip-Chip Applications
,”
Proceedings of the 51st Electronic Components and Technology Conference
, Orlando, FL, May 29–June 1, pp.
91
97
.10.1109/ECTC.2001.927696
16.
Wunderle
,
B.
,
May
,
D.
,
Heilmann
,
J.
,
Arnold
,
J.
,
Hirscheider
,
J.
,
Li
,
Y.
,
Bauer
,
J.
,
Schacht
,
R.
, and
Ras
,
M. A.
,
2019
, “
Accelerated Pump Out Testing for Thermal Greases
,”
20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
, Hannover, Germany, March 24–27, p.
11
.10.1109/EuroSimE.2019.8724540
17.
AboRas
,
M.
,
May
,
D.
,
Schacht
,
R.
,
Winkler
,
T.
,
Rzepka
,
S.
,
Michel
,
B.
, and
Wunderle
,
B.
,
2014
, “
Limitations and Accuracy of Steady State Technique for Thermal Characterization of Thermal Interface Materials and Substrates
,” Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Orlando, FL
, May 27–30, pp.
1285
1293
.10.1109/ITHERM.2014.6892429
You do not currently have access to this content.