Abstract

With the advent of gallium nitride (GaN) as an enabling material system for the solid-state lighting industry, high-power and high-brightness light-emitting diodes (LEDs) with wavelengths ranging from near ultraviolet to blue are being manufactured as part of a tremendously large and ever-increasing market. However, device self-heating and the environment temperature significantly deteriorate the LED's optical performance. Hence, it is important to accurately quantify the LED's temperature and correlate its impact on optical performance. In this work, three different characterization methods and thermal simulation were used to measure and calculate the temperature rise of an InGaN/GaN LED, as a result of self-heating. Nanoparticle-assisted Raman thermometry was used to measure the LED mesa surface temperature. A transient Raman thermometry technique was utilized to investigate the transient thermal response of the LED. It was found that under a 300 mW input power condition, self-heating is negligible for an input current pulse width of 1 ms or less. The temperature measured using nanoparticle-assisted Raman thermometry was compared with data obtained by using the forward voltage method (FVM) and infrared (IR) thermal microscopy. The IR and Raman measurement results were in close agreement whereas the data obtained from the widely accepted FVM underestimated the LED temperature by 5–10%. It was also observed that an increase in environment temperature from 25 °C to 100 °C would degrade the LED optical power output by 12%.

References

1.
Amano
,
H.
,
Kito
,
M.
,
Hiramatsu
,
K.
, and
Akasaki
,
I.
,
1989
, “
P-Type Conduction in Mg-Doped GaN Treated With Low-Energy Electron Beam Irradiation (LEEBI)
,”
Jpn. J. Appl. Phys.
,
28
(
Part 2, No. 12
), pp.
L2112
L2114
.10.1143/JJAP.28.L2112
2.
Nakamura
,
S.
,
Mukai
,
T.
, and
Senoh
,
M.
,
1991
, “
High-Power GaN P-N Junction Blue-Light-Emitting Diodes
,”
Jpn. J. Appl. Phys.
,
30
(
Part 2, No. 12A
), pp.
L1998
L2001
.10.1143/JJAP.30.L1998
3.
Reynolds
,
K. J.
,
Kock
,
J. P. D. E.
,
Tarassenko
,
L.
, and
Moyle
,
J. T. B.
,
1991
, “
Theoretical Effect on Pulse Oximetry
,” Br. J. Anaesth., 67(5), pp.
638
643
.
4.
Cao
,
X. A.
,
LeBoeuf
,
S. F.
,
Rowland
,
L. B.
,
Yan
,
C. H.
, and
Liu
,
H.
,
2003
, “
Temperature-Dependent Emission Intensity and Energy Shift in InGaN/GaN Multiple-Quantum-Well Light-Emitting Diodes
,”
Appl. Phys. Lett.
,
82
(
21
), pp.
3614
3616
.10.1063/1.1578539
5.
Schubert
,
E. F.
,
2018
,
Light-Emitting Diodes
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
6.
Dalapati
,
P.
,
Manik
,
N. B.
, and
Basu
,
A. N.
,
2015
, “
Influence of Temperature on the Performance of High Power AlGaInP Based Red Light Emitting Diode
,”
Opt. Quantum Electron.
,
47
(
5
), pp.
1227
1238
.10.1007/s11082-014-9980-5
7.
Cho
,
Y.-H.
,
Gainer
,
G. H.
,
Fischer
,
A. J.
,
Song
,
J. J.
,
Keller
,
S.
,
Mishra
,
U. K.
, and
DenBaars
,
S. P.
,
1998
, “
S-Shaped' Temperature-Dependent Emission Shift and Carrier Dynamics in InGaN/GaN Multiple Quantum Wells
,”
Appl. Phys. Lett.
,
73
(
10
), pp.
1370
1372
.10.1063/1.122164
8.
Arik
,
M.
,
Kulkarni
,
K. S.
,
Royce
,
C.
, and
Weaver
,
S.
,
2014
, “
Developing a Standard Measurement and Calculation Procedure for High Brightness LED Junction Temperature
,”
Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
170
177
.10.1109/ITHERM.2014.6892277
9.
Xi
,
Y.
, and
Schubert
,
E. F.
,
2004
, “
Junction-Temperature Measurement in GaN Ultraviolet Light-Emitting Diodes Using Diode Forward Voltage Method
,”
Appl. Phys. Lett.
,
85
(
12
), pp.
2163
2165
.10.1063/1.1795351
10.
Wang
,
Y.
,
Xu
,
H.
,
Alur
,
S.
,
Cheng
,
A. J.
,
Park
,
M.
,
Sakhawat
,
S.
,
Guha
,
A. N.
,
Akpa
,
O.
,
Akavaram
,
S.
, and
Das
,
K.
,
2009
, “
Determination of Junction Temperature of GaN-Based Light Emitting Diodes by Electroluminescence and Micro-Raman Spectroscopy
,”
International Conference of Compound Semiconductor Manufacturing Technology
(
CS MANTECH 2009
), Tampa, FL, May 18–21, pp.
2
4
. https://pdfs.semanticscholar.org/f4ce/29fc23caa3ee0cbcdd2f514d7a061ac50c1b.pdf
11.
Tamdogan
,
E.
,
Pavlidis
,
G.
,
Graham
,
S.
, and
Arik
,
M.
,
2018
, “
A Comparative Study on the Junction Temperature Measurements of LEDs With Raman Spectroscopy, Microinfrared (IR) Imaging, and Forward Voltage Methods
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
8
(
11
), pp.
1914
1922
.10.1109/TCPMT.2018.2799488
12.
Natarajan
,
S.
,
Habtemichael
,
Y.
, and
Graham
,
S.
,
2013
, “
A Comparative Study of Thermal Metrology Techniques for Ultraviolet Light Emitting Diodes
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091201
.10.1115/1.4024359
13.
Dallas
,
J.
,
Pavlidis
,
G.
,
Chatterjee
,
B.
,
Lundh
,
J. S.
,
Ji
,
M.
,
Kim
,
J.
,
Kao
,
T.
,
Detchprohm
,
T.
,
Dupuis
,
R. D.
,
Shen
,
S.
,
Graham
,
S.
, and
Choi
,
S.
,
2018
, “
Thermal Characterization of Gallium Nitride P-I-N Diodes
,”
Appl. Phys. Lett.
,
112
(
7
), p.
073503
.10.1063/1.5006796
14.
Lundh
,
J. S.
,
Chatterjee
,
B.
,
Song
,
Y.
,
Baca
,
A. G.
,
Kaplar
,
R. J.
,
Beechem
,
T. E.
,
Allerman
,
A. A.
,
Armstrong
,
A. M.
,
Klein
,
B. A.
,
Bansal
,
A.
,
Talreja
,
D.
,
Pogrebnyakov
,
A.
,
Heller
,
E.
,
Gopalan
,
V.
,
Redwing
,
J. M.
,
Foley
,
B. M.
, and
Choi
,
S.
,
2019
, “
Multidimensional Thermal Analysis of an Ultrawide Bandgap AlGaN Channel High Electron Mobility Transistor
,”
Appl. Phys. Lett.
,
115
(
15
), p.
153503
.10.1063/1.5115013
15.
Anaya
,
J.
,
Bai
,
T.
,
Wang
,
Y.
,
Li
,
C.
,
Goorsky
,
M.
,
Bougher
,
T. L.
,
Yates
,
L.
,
Cheng
,
Z.
,
Graham
,
S.
,
Hobart
,
K. D.
,
Feygelson
,
T. I.
,
Tadjer
,
M. J.
,
Anderson
,
T. J.
,
Pate
,
B. B.
, and
Kuball
,
M.
,
2017
, “
Simultaneous Determination of the Lattice Thermal Conductivity and Grain/Grain Thermal Resistance in Polycrystalline Diamond
,”
Acta Mater.
,
139
, pp.
215
225
.10.1016/j.actamat.2017.08.007
16.
Pomeroy
,
J. W.
,
Middleton
,
C.
,
Singh
,
M.
,
Dalcanale
,
S.
,
Uren
,
M. J.
,
Wong
,
M. H.
,
Sasaki
,
K.
,
Kuramata
,
A.
,
Yamakoshi
,
S.
,
Higashiwaki
,
M.
, and
Kuball
,
M.
,
2019
, “
Raman Thermography of Peak Channel Temperature in β-Ga2O3 MOSFETs
,”
IEEE Electron Device Lett.
,
40
(
2
), pp.
189
192
.10.1109/LED.2018.2887278
17.
Varshni
,
Y. P.
,
1967
, “
Temperature Dependence of the Energy Gap in Semiconductors
,”
Physica
,
34
(
1
), pp.
149
154
.10.1016/0031-8914(67)90062-6
18.
Zhang
,
W. F.
,
He
,
Y. L.
,
Zhang
,
M. S.
,
Yin
,
Z.
, and
Chen
,
Q.
,
2000
, “
Raman Scattering Study on Anatase TiO2 Nanocrystals
,”
J. Phys. D Appl. Phys.
,
33
(
8
), pp.
912
916
.10.1088/0022-3727/33/8/305
19.
Šćepanović
,
M. J.
,
Grujić-Brojčin
,
M.
,
Dohčević-Mitrović
,
Z. D.
, and
Popović
,
Z. V.
,
2007
, “
Temperature Dependence of the Lowest Frequency Eg Raman Mode in Laser-Synthesized Anatase TiO2 Nanopowder
,”
Appl. Phys. A: Mater. Sci. Process.
,
86
(
3
), pp.
365
371
.10.1007/s00339-006-3775-x
20.
Lundh
,
J. S.
,
Song
,
Y.
,
Chatterjee
,
B.
,
Baca
,
A. G.
,
Kaplar
,
R. J.
,
Armstrong
,
A. M.
,
Allerman
,
A. A.
,
Kim
,
H.
, and
Choi
,
S.
,
2019
, “
Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap Power Electronics
,”
ASME
Paper No. IPACK2019-6440.10.1115/IPACK2019-6440
21.
Kuball
,
M.
,
Riedel
,
G. J.
,
Pomeroy
,
J. W.
,
Sarua
,
A.
,
Uren
,
M. J.
,
Martin
,
T.
,
Hilton
,
K. P.
,
Maclean
,
J. O.
, and
Wallis
,
D. J.
,
2007
, “
Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Spectroscopy
,”
IEEE Electron Device Lett.
,
28
(
2
), pp.
86
89
.10.1109/LED.2006.889215
22.
Das
,
J.
,
Oprins
,
H.
,
Ji
,
H.
,
Sarua
,
A.
,
Ruythooren
,
W.
,
Derluyn
,
J.
,
Kuball
,
M.
,
Germain
,
M.
, and
Borghs
,
G.
,
2006
, “
Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design
,”
IEEE Trans. Electron Devices
,
53
(
11
), pp.
2696
2702
.10.1109/TED.2006.883944
23.
Baczkowski
,
L.
,
Carisetti
,
D.
,
Jacquet
,
J.
, and
Kendig
,
D.
,
2014
, “
Thermal Characterization of High Power AlGaN/GaN HEMTs Using Infra Red Microscopy and Thermoreflectance
,”
20th International Workshop on Thermal Investigations of ICs and Systems
, London, UK, Sept. 24–26, pp.
1
6
.10.1109/THERMINIC.2014.6972538
24.
Sarua
,
A.
,
Ji
,
H.
,
Kuball
,
M.
,
Uren
,
M. J.
,
Martin
,
T.
,
Hilton
,
K. P.
, and
Balmer
,
R. S.
,
2006
, “
Integrated Micro-Raman/Infrared Thermography Probe for Monitoring of Self-Heating in AlGaN/GaN Transistor Structures
,”
IEEE Trans. Electron Devices
,
53
(
10
), pp.
2438
2447
.10.1109/TED.2006.882274
25.
Hopper
,
R. H.
,
Oxley
,
C. H.
,
Pomeroy
,
J. W.
, and
Kuball
,
M.
,
2008
, “
Micro-Raman/Infrared Temperature Monitoring of Gunn Diodes
,”
IEEE Trans. Electron Devices
,
55
(
4
), pp.
1090
1093
.10.1109/TED.2008.916709
26.
Pandey
,
P.
,
Oxley
,
C.
,
Hopper
,
R.
,
Ali
,
Z.
, and
Duffy
,
A.
,
2019
, “
Infra-Red Thermal Measurement on a Low Power Infra-Red Emitter in CMOS Technology
,”
IET Sci. Meas. Technol.
, 13(1), pp.
25
–28.10.1049/iet-smt.2018.5427
27.
Webb
,
P. W.
,
1991
, “
Thermal Imaging of Electronic Devices With Low Surface Emissivity
,”
IEE Proc. Part G: Circuits, Devices Syst.
,
138
(
3
), pp.
390
400
.10.1049/ip-g-2.1991.0065
28.
Burghartz
,
S.
, and
Schulz
,
B.
,
1994
, “
Thermophysical Properties of Sapphire, AlN and MgAl2O4 Down to 70 K
,”
J. Nucl. Mater.
,
212–215
, pp.
1065
1068
.10.1016/0022-3115(94)90996-2
29.
Ziade
,
E.
,
Yang
,
J.
,
Brummer
,
G.
,
Nothern
,
D.
,
Moustakas
,
T.
, and
Schmidt
,
A. J.
,
2017
, “
Thickness Dependent Thermal Conductivity of Gallium Nitride
,”
Appl. Phys. Lett.
,
110
(
3
), p.
031903
.10.1063/1.4974321
30.
Liu
,
W.
, and
Balandin
,
A. A.
,
2005
, “
Thermal Conduction in AlxGa1-XN Alloys and Thin Films
,”
J. Appl. Phys.
,
97
(
7
), p.
073710
.10.1063/1.1868876
31.
Lee
,
H. K.
,
Yu
,
J. S.
, and
Lee
,
Y. T.
,
2010
, “
Thermal Analysis and Characterization of the Effect of Substrate Thinning on the Peformances of GaN-Based Light Emitting Diodes
,”
Phys. Status Solidi Appl. Mater. Sci.
,
207
(
6
), pp.
1497
1504
.10.1002/pssa.200925575
32.
Li
,
P. P.
,
Zhao
,
Y. B.
,
Li
,
H. J.
,
Che
,
J. M.
,
Zhang
,
Z.-H.
,
Li
,
Z. C.
,
Zhang
,
Y. Y.
,
Wang
,
L. C.
,
Liang
,
M.
,
Yi
,
X. Y.
, and
Wang
,
G. H.
,
2018
, “
Very High External Quantum Efficiency and Wall-Plug Efficiency 527 Nm InGaN Green LEDs by MOCVD
,”
Opt. Express
,
26
(
25
), p.
33108
.10.1364/OE.26.033108
33.
Park
,
J. H.
,
Lee
,
J. W.
,
Kim
,
D. Y.
,
Cho
,
J.
,
Fred Schubert
,
E.
,
Kim
,
J.
,
Lee
,
J.
,
Kim
,
Y.
, II
Park
,
Y.
, and
Kim
,
J. K.
,
2016
, “
Variation of the External Quantum Efficiency With Temperature and Current Density in Red, Blue, and Deep Ultraviolet Light-Emitting Diodes
,”
J. Appl. Phys.
,
119
(
2
), p.
023101
.10.1063/1.4939504
You do not currently have access to this content.