Abstract

Direct bonded copper (DBC) alumina (Al2O3) substrates are used in power electronic devices in order to transfer the heat from semiconductor devices to the heat sink and to carry high electric currents. Fatigue-induced cracks in the ceramic result in a diminished heat dissipation, leading to failure of a power device. Hence, a lifetime model concerning this failure mode is necessary. In this paper, a new lifetime model including crack initiation as well as crack propagation for the fatigue fracture of Al2O3-based DBC substrates is presented. It is based on experimental crack detection techniques and finite element method (FEM) simulations including fracture mechanics. For the validation of the lifetime model, experiments are presented which show that by appropriate design of the copper edge, the lifetime of the substrates is increased substantially.

References

1.
Liu
,
L.
,
Nam
,
D.
,
Guo
,
B.
,
Burgos
,
R.
, and
Lu
,
G.
,
2019
, “
Evaluation of a Lead Glass for Encapsulating High-Temperature Power Modules for Aerospace Application
,”
ASME
Paper No. IPACK2019-6393.10.1115/IPACK2019-6393
2.
Chen
,
C.
,
Sato
,
N.
,
Ogushi
,
T.
,
Nagao
,
S.
, and
Suganuma
,
K.
,
2019
, “
Thermal Conductivity and Interface Thermal Resistance Evaluation of DBC/DBA in Power Die Attach Modules
,”
International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
(
PCIM Europe 2019
), Nuremberg, Germany, May 7–9, pp.
1
5
.https://ieeexplore.ieee.org/abstract/document/8767597
3.
Valdez-Nava
,
Z.
,
Kenfaui
,
D.
,
Locatelli
,
M.
,
Laudebat
,
L.
, and
Guillemet
,
S.
,
2019
, “
Ceramic Substrates for High Voltage Power Electronics: Past, Present and Future
,” IEEE International Workshop on Integrated Power Packaging (
IWIPP
), Toulouse, France, Apr. 24–26, pp.
91
96
.10.1109/IWIPP.2019.8799084
4.
Yoshino
,
Y.
,
Ohtsu
,
H.
, and
Shibata
,
T.
,
1992
, “
Thermally Induced Failure of Copper-Bonded Alumina Substrates for Electronic Packaging
,”
J. Am. Ceram. Soc.
,
75
(
12
), pp.
3353
3357
.10.1111/j.1151-2916.1992.tb04433.x
5.
Gaiser
,
P.
,
Klingler
,
M.
, and
Wilde
,
J.
,
2015
, “
Fracture Mechanical Modeling for the Stress Analysis of DBC Ceramics
,”
IEEE International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Budapest, Hungary, Apr. 20–22, pp.
1
6
.10.1109/EuroSimE.2015.7103115
6.
Gaiser
,
P.
,
Klingler
,
M.
, and
Wilde
,
J.
,
2016
, “
Novel Concepts for Modelling and Enhancing the DBC-Al2O3 Lifetime
,”
Sixth Electronic System-Integration Technology Conference
(
ESTC
), Grenoble, France, Sept. 13–15, pp.
1
5
.10.1109/ESTC.2016.7764676
7.
Manson
,
S. S.
,
1953
, “
Behavior of Materials Under Conditions of Thermal Stress
,” National Advisory Committee for Aeronautics, Washington, DC, Report No.
NACA TN-2933
, pp.
1
105
.https://ntrs.nasa.gov/search.jsp?R=19930092197
8.
Coffin
,
L. F.
, Jr.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on Ductile Metal
,”
Trans. ASME
,
76
, pp.
931
950
.https://catalog.hathitrust.org/Record/101827667
9.
Zheng
,
X.
,
1986
, “
A Further Study on Fatigue Crack Initiation Life—Mechanical Model for Fatigue Crack Initiation
,”
Int. J Fatigue
,
8
(
1
), pp.
17
21
.10.1016/0142-1123(86)90042-3
10.
Zheng
,
X.
,
2001
, “
On Some Basic Problems of Fatigue Research in Engineering
,”
Int. J. Fatigue
,
23
(
9
), pp.
751
766
.10.1016/S0142-1123(01)00040-8
11.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
534
.10.1115/1.3656900
12.
Donahue
,
R. J.
,
Clark
,
H. M.
,
Atanmo
,
P.
,
Kumble
,
R.
, and
McEvily
,
A. J.
,
1972
, “
Crack Opening Displacement and the Rate of Fatigue Crack Growth
,”
Int. J. Fract.
,
8
(
2
), pp.
209
219
.10.1007/BF00703882
13.
Pugno
,
N.
,
Ciavarella
,
M.
,
Cornetti
,
P.
, and
Carpinteri
,
A.
,
2006
, “
A Generalized Paris' Law for Fatigue Crack Growth
,”
J. Mech. Phys. Solids
,
54
(
7
), pp.
1333
1349
.10.1016/j.jmps.2006.01.007
14.
Wilde
,
J.
,
2006
, “
Methoden zur Zuverlässigkeitsqualifizierung Neuer Technologien in der Aufbau- und Verbindungs-Technik—Herausforderungen Und Möglichkeiten
,” M. Detert, ed., Templin, Germany.
15.
Schiebold
,
K.
,
2015
,
Zerstörungsfreie Werkstoffprüfung—Ultraschallprüfung
,
Springer
, Berlin.
16.
Krautkrämer
,
J.
, and
Krautkrämer
,
H.
,
1986
,
Werkstoffprüfung Mit Ultraschall
,
Springer
, Berlin.
17.
Tuan
,
W.-H.
, and
Lee
,
S.-K.
,
2014
, “
Eutectic Bonding of Copper to Ceramics for Thermal Dissipation Applications—A Review
,”
J. Eur. Ceram. Soc.
,
34
(
16
), pp.
4117
4130
.10.1016/j.jeurceramsoc.2014.07.011
18.
Frederick
,
C. O.
, and
Armstrong
,
P. J.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect, Central Electricity Generating Board
,” Central Electricity Generating Board and Berkeley Nuclear Laboratories, Research & Development Department, Berkeley, UK, Report No.
RD/B/N 731
.https://www.researchgate.net/publication/288912022_A_mathematical_representation_of_the_multiaxial_Bauschinger_effect_CEGB_Report_RDBN_731_Central_Electricity_G
19.
Voce
,
E.
,
1955
, “
A Practical Strain-Hardening Function
,”
Metallurgica
,
51
, pp.
219
226
.
20.
Broggiato
,
G. B.
,
Campana
,
F. G.
, and
Cortese
,
L.
,
2008
, “
The Chaboche Nonlinear Kinematic Hardening Model: Calibration Methodology and Validation
,”
Meccanica
,
43
(
2
), pp.
115
124
.10.1007/s11012-008-9115-9
21.
Stern
,
M.
,
Becker
,
E. B.
, and
Dunham
,
R. S.
,
1976
, “
Contour Integral Computation of Mixed-Mode Stress Intensity Factors
,”
Int. J. Fract.
,
12
, pp.
359
368
.10.1007/BF00032831
22.
Yau
,
J. F.
,
Wang
,
S. S.
, and
Corten
,
H. T.
,
1980
, “
A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elastics
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
335
341
.10.1115/1.3153665
23.
Jacobs
,
D. S.
, and
Chen
,
I.-W.
,
1995
, “
Cyclic Fatigue in Ceramics: A Balance Between Crack Shielding Accumulation and Degradation
,”
J Am. Ceram. Soc.
,
78
(
3
), pp.
513
520
.10.1111/j.1151-2916.1995.tb08208.x
24.
Lathabai
,
S.
,
Rödel
,
J.
, and
Lawn
,
B. R.
,
1991
, “
Cyclic Fatigue From Frictional Degradation at Bridging Grains in Alumina
,”
J. Am. Ceram. Soc.
,
74
(
6
), pp.
1340
1348
.10.1111/j.1151-2916.1991.tb04109.x
25.
Xu
,
L.
,
Wang
,
M.
,
Zhou
,
Y.
,
Qian
,
Z.
, and
Liu
,
S.
,
2016
, “
An Optimal Structural Design to Improve the Reliability of Al2O3-DBC Substrates Under Thermal Cyling
,”
Microelectron. Reliab.
,
56
, pp.
101
108
.10.1016/j.microrel.2015.11.013
26.
Cakir
,
O.
,
2006
, “
Copper Etching With Cupric Chloride and Regeneration of Waste Etchant
,”
J. Mater. Process Tech.
,
175
(
1–3
), pp.
63
68
.10.1016/j.jmatprotec.2005.04.024
You do not currently have access to this content.