Abstract

This paper presents an experimental analysis for minimizing the thermal contact resistance (R) between an optical fiber and copper heat sink by using the low-melting temperature alloy (LMTA) as the thermal interface material (TIM) subject to high-flux operation (up to 250 W ⋅ m−1). For the cases without LMTA, the temperature rise (ΔT) can easily surpass 195 °C at a heating load of 25 W ⋅ m−1. By contrast, ΔT is dramatically reduced to be less than 1 °C with LMTA as TIM with a much higher heating power of 150 W ⋅ m−1. The corresponding thermal resistance (R) can be reduced from 6.5–8.2 K ⋅ m ⋅ W−1 to 0.004–0.013 K ⋅ m ⋅ W−1. The improvement is far superior to existing studies. Besides, decreasing the surface roughness and increasing contact pressure also help to reduce R, especially for the cases when the LMTA is not melted. As the LMTA melts, a significant reduction of R by 56% is achieved as compared to the case without melting. The effect of surface roughness and contact pressure on the thermal contact resistance is also examined, and it is found that the influences are small once LMTA melts.

References

1.
Lapointe
,
M.-A.
,
Chatigny
,
S.
,
Piché
,
M.
,
Cain-Skaff
,
M.
, and
Maran
,
J.-N.
,
2009
, “
Thermal Effects in High-Power CW Fiber Lasers
,”
Proc. SPIE
,
7195
, p.
71951 U
.10.1117/12.809021
2.
Macris
,
C. G.
,
Sanderson
,
T. R.
,
Ebel
,
R. G.
,
Leyerle
,
C. B.
, and
Solutions
,
E.
,
2004
, “Performance, Reliability, and Approaches Using a Low Melt Alloy as a Thermal Interface Material,” 37th International Symposium on Microelectronics (
IMAPS
), Long Beach, CA, Nov. 14–18.https://www.enerdynesolutions.com/downloads/imaps_2004_man.pdf
3.
Gwinn
,
J.
, and
Webb
,
R.
,
2002
, “
Development of a Low Melting Temperature Alloy Thermal Interface Material (TIM)
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego
, CA, May 30–June 1, pp.
671
676
.
4.
Raiszadeh
,
F.
, and
Derian
,
E.
,
2001
, “
Thermal-Mechanical Measurements and Analysis of an Advanced Thermal Interface Material Construction
,”
17th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 22, pp.
63
70
.
5.
Davidson
,
D. A.
, and
Lehman
,
G. L.
,
2001
, “
Thermal Performance of Liquid Solder Joint Between Metal Faces
,”
The Pacific Rim/International, Intersociety Electronic Packaging Technical/Business Conference
, Kauai, HI, July 8–13, Paper No. IPACK2001–15890.
6.
Chuang
,
T.
,
Tsao
,
L.
,
Tsai
,
T.
,
Yeh
,
M.
, and
Wu
,
C.
,
2000
, “
Development of a Low-Melting-Point Filler Metal for Brazing Aluminum Alloys
,”
Metall. Mater. Trans. A
,
31
(
9
), pp.
2239
2245
.10.1007/s11661-000-0141-z
7.
Roy
,
C. K.
,
Hamilton
,
M. C.
,
Johnson
,
R. W.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2017
, “
Reliability of Low Melt Alloys as Thermal Interface Materials
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Orlando, FL, May 30–June 2, pp.
373
377
.
8.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M. C.
,
Wayne Johnson
,
R.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2016
, “
Durability of Low Melt Alloys as Thermal Interface Materials
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010913
.10.1115/1.4032462
9.
Lee
,
S. K.
,
Lim
,
S. S.
,
Shin
,
Y. C.
,
Choi
,
H. J.
,
Kim
,
T. B.
,
Kim
,
J. B.
,
Choi
,
D. K.
,
Cho
,
C. D.
, and
Jung
,
T. K.
,
2019
, “
Brazing Characteristics and Bonding Strength of Pure Titanium Joints Brazed With Low-Melting Temperature Zi–17Ti–22Ni Filler Metal
,”
J. Nanosci. Nanotechnol.
,
19
(
3
), pp.
1592
1596
.10.1166/jnn.2019.16158
10.
Yang
,
C. H.
,
Zhou
,
S.
,
Nishikawa
,
H.
, and
Lin
,
S. K.
,
2018
, “
Mechanical Properties of Sn-Bi-in-Ga Low Melting Temperature Solder Alloys
,”
International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC)
, Mie, Japan, April 17–21, pp.
409
410
.
11.
Wang
,
L.
, and
Liu
,
J.
,
2014
, “
Liquid Phase 3D Printing for Quickly Manufacturing Conductive Metal Objects With Low Melting Point Alloy Ink
,”
Sci. China Technol. Sci.
,
57
(
9
), pp.
1721
1728
.10.1007/s11431-014-5583-4
12.
Guo
,
X.
,
Ding
,
Y.
,
Xue
,
L.
,
Zhang
,
L.
,
Zhang
,
C.
,
Goodenough
,
J. B.
, and
Yu
,
G.
,
2018
, “
A Self‐Healing Room‐Temperature Liquid‐Metal Anode for Alkali‐Ion Batteries
,”
Adv. Funct. Mater.
,
28
(
46
), p.
1804649
.10.1002/adfm.201804649
13.
Shaikh
,
K. A.
,
Li
,
S.
, and
Liu
,
C.
,
2008
, “
Development of a Latchable Microvalve Employing a Low-Melting-Temperature Metal Alloy
,”
J. Microelectromech. Syst.
,
17
(
5
), pp.
1195
1203
.10.1109/JMEMS.2008.2003055
14.
Yang
,
X. H.
,
Tan
,
S. C.
,
He
,
Z. Z.
, and
Liu
,
J.
,
2018
, “
Finned Heat Pipe Assisted Low Melting Point Metal PCM Heat Sink Against Extremely High Power Thermal Shock
,”
Energy Convers. Manage.
,
160
, pp.
467
476
.10.1016/j.enconman.2018.01.056
15.
Ge
,
H.
,
Li
,
H.
,
Mei
,
S.
, and
Liu
,
J.
,
2013
, “
Low Melting Point Liquid Metal as a New Class of Phase Change Material: An Emerging Frontier in Energy Area
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
331
346
.10.1016/j.rser.2013.01.008
16.
Cook
,
R.
,
Token
,
K.
, and
Calkins
,
R.
,
1984
, “
A Novel Concept for Reducing Thermal Contact Resistance
,”
J. Spacecr. Rockets
,
21
(
1
), pp.
122
124
.10.2514/3.8618
17.
Mireles
,
J.
,
Kim
,
H.-C.
,
Hwan Lee
,
I.
,
Espalin
,
D.
,
Medina
,
F.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2013
, “
Development of a Fused Deposition Modeling System for Low Melting Temperature Metal Alloys
,”
ASME J. Electron. Packag.
,
135
(
1
), p.
011008
.10.1115/1.4007160
18.
Wei
,
S.
,
Zhou
,
L. J.
, and
Guo
,
J. D.
,
2018
, “
Investigation on Highly Efficient Thermal Interface Materials: A New Attempt to Bond Heat-Conducting Particles Using Low-Melting-Temperature Alloy
,”
19th International Conference on Electronic Packaging Technology (ICEPT)
, Shanghai, China, Aug. 8–11, pp.
1333
1336
.
19.
Mrozek
,
R. A.
,
Cole
,
P. J.
,
Mondy
,
L. A.
,
Rao
,
R. R.
,
Bieg
,
L. F.
, and
Lenhart
,
J. L.
,
2010
, “
Highly Conductive, Melt Processable Polymer Composites Based on Nickel and Low Melting Eutectic Metal
,”
Polymers
,
51
(
14
), pp.
2954
2958
.10.1016/j.polymer.2010.04.067
20.
Kang
,
J. H.
,
Sheng
,
J. L.
,
Fu
,
X. Z.
,
Sun
,
R.
, and
Wong
,
C. P.
,
2017
, “
A Low-Melting-Point Alloy Filled Epoxy Conductive Adhesives as Thermal Interface Materials
,”
18th International Conference on Electronic Packaging Technology (ICEPT)
, Harbin, China, Aug. 16–19, pp.
831
834
.
21.
Lunn
,
N. L.
,
McCrea
,
C. J.
,
Pregaman
,
R. D.
, and
Turowski
,
L. E.
,
1978
, “
Low Melting Temperature Metal Coating Process, Apparatus and Product
,” Patent No. US4097625A.
22.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
(
3
), pp.
215
222
.10.1016/S0026-2692(02)00191-X
23.
Fan
,
Y.
,
He
,
B.
,
Zhou
,
J.
,
Zheng
,
J.
,
Liu
,
H.
,
Wei
,
Y.
,
Dong
,
J.
, and
Lou
,
Q.
,
2011
, “
Thermal Effects in Kilowatt All-Fiber MOPA
,”
Opt. Express
,
19
(
16
), pp.
15162
15172
.10.1364/OE.19.015162
24.
Dai
,
S.
,
He
,
B.
,
Zhou
,
J.
, and
Zhao
,
C.
,
2013
, “
Cooling Technology of High-Power Fiber Laser Amplifier
,”
Chin. J. Lasers
,
40
(
5
), p.
0502003
(in Chinese).10.3788/CJL201340.0502003
25.
ASTM International
,
2006
, “Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials,” ASTM International, West Conshohocken, PA, Standard No. ASTM D5470–06.
You do not currently have access to this content.