Abstract

The trend toward heterogeneous integration of optoelectronic, electronic, and micromechanical components favors three-dimensional (3D) integration in which the components are not arranged side-by-side but rather in vertical stacks. This presents a particular challenge due to the fact that the stacked components have different geometric dimensions, and their contact surfaces are also dissimilar. Therefore, an intermediate substrate, the so-called interposer, with different formats (i.e., flip-chip, wire-bond, and hybrid flip-chip/wire bond) comes into play. Currently, the interposers are mainly made of silicon or glass, which incur huge additional costs to the packaged components. In this study, the unique advantages of additive manufacturing (AM) are exploited to realize organic interposers. The proposed interposers provide easy signal probing and flexible die-to-board integration in lower costs without any lithography process, drilling, plating, or any waste. Accordingly, the two state-of-the-art 3D printers (i.e., a monomaterial 3D printer and a bimaterial 3D printer) were utilized for the manufacturing of the interposer parts. The complementary circuitry for vias and through-holes was facilitated by also additive technologies, i.e., 2D-inkjet printing and microdispensing. Moreover, and to manifest the unique possibilities within AM for the next generation of interposers, two examples for 3D-printed interposers with incorporated added-features, i.e., pillars for flip-chip bonding and cavities for face-up die-attachment were realized. The assemblies were consequently assessed by electrical examinations. Conclusively, the main opportunities and challenges toward the full implementation of AM technology for the fabrication of organic interposers with added-features such as integrated multipurpose vias were discussed. Based on the results obtained from this study, it was found that bimaterial 3D printer was more efficient and powerful for the construction of interposers.

References

1.
Usman
,
A.
,
Shah
,
E.
,
Satishprasad
,
N. B.
,
Chen
,
J.
,
Bohlemann
,
S. A.
,
Shami
,
S. H.
,
Eftekhar
,
A. A.
, and
Adibi
,
A.
,
2017
, “
Interposer Technologies for High-Performance Applications
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
7
(
6
), pp.
819
828
.10.1109/TCPMT.2017.2674686
2.
Tummula
,
R.
,
2008
,
System on Package: Miniaturization of the Entire System
,
McGraw-Hill
,
New York
.
3.
Zhang
,
X.
,
Chai
,
T. C.
,
Lau
,
J. H.
,
Selvanayagam
,
C. S.
,
Biswas
,
K.
,
Liu
,
S.
,
Pinjala
,
D.
,
Tang
,
G. Y.
,
Ong
,
Y. Y.
,
Vempati
,
S. R.
, and
Wai
,
E.
,
2009
, “
Development of Through Silicon Via (TSV) Interposer Technology for Large Die (21 × 21 mm) Fine-Pitch Cu/Low-k FCBGA Package
,”
59th IEEE Electronic Components and Technology Conference (ECTC)
,
San Diego, CA
,
May
, pp.
305
312
.
4.
Parekh
,
M. S.
,
Thadesar
,
P. A.
, and
Bakir
,
M. S.
,
2011
, “
Electrical, Optical and Fluidic Through-Silicon Vias for Silicon Interposer Applications
,”
61st IEEE Electronic Components and Technology Conference
(
ECTC
),
Lake Buena Vista, FL
,
May 31–June 3
, pp.
1992
1998
.10.1109/ECTC.2011.5898790
5.
Roshanghias
,
A.
,
Krivec
,
M.
,
Bardong
,
J.
,
Abram
,
A.
, and
Binder
,
A.
,
2016
, “
Printed SAW Transponder Package for Rapid Prototyping of Electronic Packages
,”
Sixth IEEE Electronic System-Integration Technology Conference
(
ESTC
),
Grenoble, France
,
Sept. 13–15
, pp.
1
4
.10.1109/ESTC.2016.7764745
6.
Krivec
,
M.
,
Roshanghias
,
A.
,
Abram
,
A.
, and
Binder
,
A.
,
2017
, “
Exploiting the Combination of 3D Polymer Printing and Inkjet Ag-Nanoparticle Printing for Advanced Packaging
,”
Microelectron. Eng.
,
176
, pp.
1
5
.10.1016/j.mee.2016.12.021
7.
Roshanghias
,
A.
,
Ma
,
Y.
,
Dreissigacker
,
M.
,
Braun
,
T.
,
Bretthauer
,
C.
,
Becker
,
K. F.
, and
Schneider-Ramelow
,
M.
,
2018
, “
The Realization of Redistribution Layers for FOWLP by Inkjet Printing
,”
Proceedings
,
2
(
13
), p.
703
.10.3390/proceedings2130703
8.
Saada
,
G.
,
Layani
,
M.
,
Chernevousky
,
A.
, and
Magdassi
,
S.
,
2017
, “
Hydroprinting Conductive Patterns Onto 3D Structures
,”
Adv. Mater. Technol.
,
2
(
5
), p.
1600289
.10.1002/admt.201600289
9.
Espalin
,
D.
,
Muse
,
D. W.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing Multifunctionality: Structures With Electronics
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
963
978
.10.1007/s00170-014-5717-7
10.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B: Eng.
,
143
, pp.
172
196
.
11.
Bandyopadhyay
,
A.
, and
Heer
,
B.
,
2018
, “
Additive Manufacturing of Multi-Material Structures
,”
Mater. Sci. Eng., R
,
129
, pp.
1
16
.10.1016/j.mser.2018.04.001
12.
Qu
,
X.
,
Li
,
J.
,
Yin
,
Z.
, and
Zou
,
H.
,
2019
, “
New Lithography Technique Based on Electrohydrodynamic Printing Platform
,”
Org. Electron.
,
71
, pp.
279
283
.10.1016/j.orgel.2019.05.013
13.
Chu
,
W.
,
Tan
,
Y.
,
Wang
,
P.
,
Xu
,
J.
,
Li
,
W.
,
Qi
,
J.
, and
Cheng
,
Y.
,
2018
, “
Centimeter‐Height 3D Printing With Femtosecond Laser Two‐Photon Polymerization
,”
Adv. Mater. Technol.
,
3
(
5
), p.
1700396
.10.1002/admt.201700396
14.
Kamyshny
,
A.
, and
Magdassi
,
S.
,
2019
, “
Conductive Nanomaterials for 2D and 3D Printed Flexible Electronics
,”
Chem. Soc. Rev.
,
48
(
6
), pp.
1712
1740
.10.1039/C8CS00738A
15.
Flowers
,
P. F.
,
Reyes
,
C.
,
Ye
,
S.
,
Kim
,
M. J.
, and
Wiley
,
B. J.
,
2017
, “
3D Printing Electronic Components and Circuits With Conductive Thermoplastic Filament
,”
Addit. Manuf.
,
18
, pp.
156
163
.10.1016/j.addma.2017.10.002
16.
Lu
,
B.
,
Lan
,
H.
, and
Liu
,
H.
,
2018
, “
Additive Manufacturing Frontier: 3D Printing Electronics
,”
Opto-Electron. Adv.
,
1
(
1
), p.
17000401
.10.29026/oea.2018.170004
17.
Shemelya
,
C.
,
Banuelos-Chacon
,
L.
,
Melendez
,
A.
,
Kief
,
C.
,
Espalin
,
D.
,
Wicker
,
R.
,
Krijnen
,
G.
, and
MacDonald
,
E.
,
2015
, “
Multi-Functional 3D Printed and Embedded Sensors for Satellite Qualification Structures
,”
IEEE Sensors
(
ICSENS
),
Busan, South Korea
,
Nov. 1–4
, pp.
1
4
.10.1109/ICSENS.2015.7370541
18.
MacDonald
,
E.
, and
Wicker
,
R.
,
2016
, “
Multiprocess 3D Printing for Increasing Component Functionality
,”
Science
,
353
(
6307
), p.
aaf2093
.10.1126/science.aaf2093
19.
Christenson
,
K. K.
,
Paulsen
,
J. A.
,
Renn
,
M. J.
,
McDonald
,
K.
, and
Bourassa
,
J.
,
2011
, “
Direct Printing of Circuit Boards Using Aerosol Jet®
,”
NIP & Digital Fabrication Conference, Society for Imaging Science and Technology
, Vol.
2011
,
Saint Paul, MN
,
Jan.
, pp.
433
436
.
20.
Macdonald
,
E.
,
Salas
,
R.
,
Espalin
,
D.
,
Perez
,
M.
,
Aguilera
,
E.
,
Muse
,
D.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing for the Rapid Prototyping of Structural Electronics
,”
IEEE Access
,
2
, pp.
234
242
.10.1109/ACCESS.2014.2311810
21.
Kim
,
C.
,
Espalin
,
D.
,
Liang
,
M.
,
Xin
,
H.
,
Cuaron
,
A.
,
Varela
,
I.
,
Macdonald
,
E.
, and
Wicker
,
R. B.
,
2017
, “
3D Printed Electronics With High Performance, Multi-Layered Electrical Interconnect
,”
IEEE Access
,
5
, pp.
25286
25294
.10.1109/ACCESS.2017.2773571
22.
Roshanghias
,
A.
,
Krivec
,
M.
, and
Baumgart
,
M.
,
2017
, “
Sintering Strategies for Inkjet Printed Metallic Traces in 3D Printed Electronics
,”
Flexible Printed Electron.
,
2
(
4
), p.
045002
.10.1088/2058-8585/aa8ed8
23.
Wong
,
C. L.
, and
How
,
J.
,
1997
, “
Low Cost Flip Chip Bumping Technologies
,”
First Electronic Packaging Technology Conference
(
EPTC
),
Singapore
,
Oct. 10
, pp.
244
250
.10.1109/EPTC.1997.723917
24.
Pressure Sensors
,
2015
, “
C27 Series
,” TDK Electronics (EPCOS) AG, Munich, Germany, accessed Aug. 3, 2009, https://www.tdk-electronics.tdk.com/inf/57/ds/c27_abs.pdf
You do not currently have access to this content.