Abstract

This study focused on the improved designs of airflow management in container data centers having overhead air supply. The computational fluid dynamics (CFD) model is first validated with experimental results. Then, the impact of grille diameter, deflector angle, and air supply layout on the data center thermal performance is investigated. The results show that the larger grille diameter may reduce the volumetric flowrate through the upstream grille, causing insufficient air supply and strong hot-air recirculation at the first rack A1. By decreasing the grille diameter from 335 mm to 235 mm, the average rack cooling index (RCI) and supply heat index (SHI) can be improved from 25.4% and 0.292 to 65% and 0.258, respectively. However, implementing small diameter grilles is not an economic way for data center performance improvement as far as the energy consumption is concerned due to the high pumping power. Meanwhile, raising the deflector angle below 30 deg in grille S1 can provide moderate improvement on temperature of the A1 rack. A further rise in the deflector to 40 deg may impose severe deterioration with a pronounced hot-spot area. The data center performance can be improved by changing from center-cold-aisle arrangement to center-hot-aisle layout. The layout provides much higher return air temperature and the RCI and SHI can be improved by 32.7% and 34.5%, respectively.

References

References
1.
Arman
,
S.
,
Sarah Josephine
,
S.
,
Dale
,
A. S.
,
Richard
,
E. B.
,
Magnus
,
H.
,
Jonathan
,
G. K.
, et al. .,
2016
, “
United States Data Center Energy Usage Report
,” Lawrence Berkeley National Laboratory, Berkeley, CA, pp.
1
57
.
2.
Lima
,
J. M.
,
2017
, “
Data Centers of the World Will Consume 1/5 of Earth's Power by 2025
,” Euromoney Institutional Investor PLC, London, UK, Technical report.
3.
Ni
,
J.
, and
Bai
,
X.
,
2017
, “
A Review of Air Conditioning Energy Performance in Data Centers
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
625
640
.10.1016/j.rser.2016.09.050
4.
Daraghmeh
,
H. M.
, and
Wang
,
C. C.
,
2017
, “
A Review of Current Status of Free Cooling in Datacenters
,”
Appl. Therm. Eng.
,
114
, pp.
1224
1239
.10.1016/j.applthermaleng.2016.10.093
5.
Chu
,
W. X.
, and
Wang
,
C. C.
,
2019
, “
A Review on Airflow Management in Data Centers
,”
Appl. Energy
,
240
, pp.
84
119
.10.1016/j.apenergy.2019.02.041
6.
Fulpagare
,
Y.
,
Mahamuni
,
G.
, and
Bhargav
,
A.
,
2015
, “
Effect of Plenum Chamber Obstructions on Data Center Performance
,”
Appl. Therm. Eng.
,
80
, pp.
187
195
.10.1016/j.applthermaleng.2015.01.065
7.
Nada
,
S. A.
, and
Said
,
M. A.
,
2017
, “
Comprehensive Study on the Effects of Plenum Depths on Air Flow and Thermal Managements in Data Centers
,”
Int. J. Therm. Sci.
,
122
, pp.
302
312
.10.1016/j.ijthermalsci.2017.09.001
8.
VanGilder
,
J. W.
, and
Zhang
,
X. H.
,
2014
, “
Cooling Performance of Ceiling-Plenum-Ducted Containment Systems in Data Centers
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 27–30, pp.
786
792
.
9.
Arghode
,
V. K.
, and
Joshi
,
Y.
,
2015
, “
Experimental Investigation of Air Flow Through a Perforated Tile in a Raised Floor Data Center
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011011
.10.1115/1.4028835
10.
Zhang
,
K.
,
Zhang
,
X.
,
Li
,
S.
, and
Jin
,
X.
,
2014
, “
Experimental Study on the Characteristics of Supply Air for UFAD System With Perforated Tiles
,”
Energy Build.
,
80
, pp.
1
6
.10.1016/j.enbuild.2014.05.007
11.
VanGilder
,
J. W.
,
Pardey
,
Z. M.
, and
Healey
,
C. M.
,
2016
, “
Measurement of Perforated Tile Airflow in Data Centers
,”
ASHRAE Trans.
,
122
, pp.
88
96
.
12.
Athavale
,
J.
,
Joshi
,
Y.
,
Yoda
,
M.
, and
Phelps
,
W.
,
2016
, “
Impact of Active Tiles on Data Center Flow and Temperature Distribution
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, May 31 to June 03, pp.
1162
1171
.
13.
Erden
,
H. S.
,
Koz
,
M.
,
Yildirim
,
M. T.
, and
Khalifa
,
H. E.
,
2017
, “
Experimental Demonstration and Flow Network Model Verification of Induced CRAH Bypass for Cooling Optimization of Enclosed-Aisle Data Centers
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
11
), pp.
1795
1803
.10.1109/TCPMT.2017.2737878
14.
Song
,
Z.
,
2016
, “
Thermal Performance of a Contained Data Center With Fan-Assisted Perforations
,”
Appl. Therm. Eng.
,
102
, pp.
1175
1184
.10.1016/j.applthermaleng.2016.03.157
15.
Wang
,
I. N.
,
Tsui
,
Y. Y.
, and
Wang
,
C. C.
,
2015
, “
Improvements of Airflow Distribution in a Container Data Center
,”
Energy Procedia
,
75
, pp.
1819
1824
.10.1016/j.egypro.2015.07.153
16.
Nada
,
S. A.
, and
Said
,
M. A.
,
2017
, “
Effect of CRAC Units Layout on Thermal Management of Data Center
,”
Appl. Therm. Eng.
,
118
, pp.
339
344
.10.1016/j.applthermaleng.2017.03.003
17.
Zhang
,
X. H.
,
Iyengar
,
M.
,
VanGilder
,
J. W.
, and
Schmidt
,
R. R.
,
2008
, “
Effect of Rack Modeling Detail on the Numerical Results of a Data Center Test Cell
,”
11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 28–31, pp.
1183
1188
.
18.
Alkharabsheh
,
S. A.
,
Sammakia
,
B. G.
, and
Shrivastava
,
S. K.
,
2015
, “
Experimentally Validated Computational Fluid Dynamics Model for a Data Center With Cold Aisle Containment
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021010
.10.1115/1.4029344
19.
Zhang
,
X. H.
,
VanGilder
,
J. W.
,
Healey
,
C. M.
, and
Sheffer
,
Z. R.
,
2013
, “
Compact Modelling of Data Center Air Containment Systems
,”
ASME
Paper No. IPACK2013-73325.10.1115/IPACK2013-73325
20.
Sundaralingam
,
V.
,
Arghode
,
V. K.
,
Joshi
,
Y.
, and
Phelps
,
W.
,
2015
, “
Experimental Characterization of Various Cold Aisle Containment Configurations for Data Centers
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011007
.10.1115/1.4028520
21.
Fink
,
J. R.
,
2015
, “
Plenum-Leakage Bypass Airflow in Raised-Floor Data Centers
,”
ASHRAE Trans.
,
121
, pp.
422
429
.http://eds.b.ebscohost.com/eds/detail/detail?vid=0&sid=46e1e67c-70b3-48b0-b3ff-a169540ce0af%40pdc-v-sessmgr03&bdata=JnNpdGU9ZWRzLWxpdmU%3d#AN=108334584&db=aph
22.
Radmehr
,
A.
,
Karki
,
K. C.
,
Patankar
,
S. V.
, and
Schmidt
,
R. R.
,
2005
, “
Distributed Leakage Flow in Raised-Floor Data Centers
,”
ASME
Paper No. IPACK2005-73273.10.1115/IPACK2005-73273
23.
Song
,
Z. H.
,
Murray
,
B. T.
, and
Sammakia
,
B.
,
2014
, “
Parametric Analysis for Thermal Characterization of Leakage Flow in Data Centers
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 27–30, pp.
778
785
.
24.
Schmidt
,
R. R.
,
Karki
,
K. C.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. C.
,
2001
, “
Measurements and Predictions of the Flow Distribution Through Perforated Tiles in Raised Floor Data Center
,”
ASME
Paper No. IPACK2001-15728.https://www.researchgate.net/publication/291058185_Measurements_and_predictions_of_the_flow_distribution_through_perforated_tiles_in_raised-floor_data_centers
25.
Shah
,
A.
,
Patel
,
C.
,
Bash
,
C.
,
Sharma
,
R.
, and
Shih
,
R.
,
2008
, “
Impact of Rack-Level Compaction on the Data Center Cooling Ensemble
,”
11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May. 28–31, pp.
1175
1182
.
26.
Shrivastava
,
S.
,
Iyengar
,
M.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
VanGilder
,
J.
,
2009
, “
Experimental-Numerical Comparison for a High-Density Data Center: Hot Spot Heat Fluxes in Excess of 500 W/ft2
,”
IEEE Trans. Compon. Packag. Technol.
,
1
, pp.
166
172
.10.1109/ITHERM.2006.1645371
27.
Jian
,
Q.
,
Wang
,
Q.
,
Wang
,
H.
, and
Zuo
,
Z.
,
2012
, “
Comparison Between Numerical and Experimental Results of Airflow Distribution in Diffuser Based Data Center
,”
ASME J. Electron. Packag.
,
134
(
1
), p.
011006
.10.1115/1.4005912
28.
Nemati
,
K.
,
Alissa
,
H. A.
,
Murray
,
B. T.
, and
Sammakia
,
B.
,
2016
, “
Steady-State and Transient Comparison of Cold and Hot Aisle Containment and Chimney
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, May 31 to Jun 03, pp.
1435
1443
.
29.
Hassan
,
N. M. S.
,
Khan
,
M. M. K.
, and
Rasul
,
M. G.
,
2013
, “
Temperature Monitoring and CFD Analysis of Data Centre
,”
Procedia Eng.
,
56
, pp.
551
559
.10.1016/j.proeng.2013.03.159
30.
Renner
,
M.
, and
Seymour
,
M.
,
2015
, “
Data Center Operational CFD Predictive Models: Are They Accurate Enough to Be Useful and Reliable?
,”
ASHRAE Trans.
,
121
, pp.
1
8
.http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=108334602&site=eds-live
31.
Wibron
,
E.
,
Ljung
,
A.-L.
, and
Lundström
,
T.
,
2018
, “
Computational Fluid Dynamics Modeling and Validating Experiments of Airflow in a Data Center
,”
Energies
,
11
, p.
644
.10.3390/en11030644
32.
Kumar
,
P.
,
Sundaralingam
,
V.
, and
Joshi
,
Y.
,
2010
, “
Dynamics of Cold Aisle Air Distribution in a Raised Floor Data Center
,”
Third International Conference on Thermal Issues in Emerging Technologies (ThETA)
, Cairo, Egypt, Dec. 19–22, pp.
95
102
.
33.
Kumar
,
P.
,
Joshi
,
Y.
,
Patterson
,
M. K.
,
Steinbrecher
,
R.
, and
Mena
,
M.
,
2012
, “
Cold Aisle Air Distribution in a Raised Floor Data Center With Heterogeneous Opposing Orientation Racks
,”
ASME
Paper No. IPACK2011-52117.10.1115/IPACK2011-52117
34.
Nada
,
S. A.
,
Elfeky
,
K. E.
, and
Attia
,
A. M. A.
,
2016
, “
Experimental Investigations of Air Conditioning Solutions in High Power Density Data Centers Using a Scaled Physical Model
,”
Int. J. Refrig.
,
63
, pp.
87
99
.10.1016/j.ijrefrig.2015.10.027
35.
Nada
,
S. A.
, and
Elfeky
,
K. E.
,
2016
, “
Experimental Investigations of Thermal Managements Solutions in Data Centers Buildings for Different Arrangements of Cold Aisles Containments
,”
J. Build. Eng.
,
5
, pp.
41
49
.10.1016/j.jobe.2015.11.001
36.
Chu
,
W. X.
,
Hsu
,
C. S.
,
Tsui
,
Y. Y.
, and
Wang
,
C. C.
,
2019
, “
Experimental Investigation on Thermal Management for Small Container Data Center
,”
J. Build. Eng.
,
21
, pp.
317
327
.10.1016/j.jobe.2018.10.031
37.
Wang
,
C. H.
,
Tsui
,
Y. Y.
, and
Wang
,
C. C.
,
2017
, “
Airflow Management on the Efficiency Index of a Container Data Center Having Overhead Air Supply
,”
ASME J. Electron. Packag.
,
139
(
4
), p.
041008
.10.1115/1.4038114
38.
Wang
,
C. H.
,
Tsui
,
Y. Y.
, and
Wang
,
C. C.
,
2017
, “
On Cold-Aisle Containment of a Container Datacenter
,”
Appl. Therm. Eng.
,
112
, pp.
133
142
.10.1016/j.applthermaleng.2016.10.089
39.
Arghode
,
V. K.
,
Sundaralingam
,
V.
,
Joshi
,
Y.
, and
Phelps
,
W.
,
2013
, “
Thermal Characteristics of Open and Contained Data Center Cold Aisle
,”
ASME Trans. J. Heat Transfer
,
135
(
6
), p.
061901
.10.1115/1.4023597
40.
Herrlin
,
M. K.
,
2005
, “
Rack Cooling Effectiveness in Data Centers and Telecom Central Offices: The Rack Cooling Index (RCI)
,”
ASHRAE Trans.
,
111
, pp.
725
731
.
41.
ASHRAE
,
2004
, “
Thermal Guidlines for Data Processing Environments
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.
42.
Sharma
,
R. K.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2002
, “
Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-Scale Data Centers
,”
Eighth ASME/AIAA Joint Thermophysics and Heat Transfer Conference
, Louis, Missouri, June 24–26, AIAA-2002-3091.
43.
Future Facilities, “
6SigmaRoom
,”
Future Facilities Ltd, San Jose, CA.
44.
Wilcox
,
C. D.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
45.
Athavale
,
J.
,
Joshi
,
Y.
, and
Yoda
,
M.
,
2018
, “
Experimentally Validated Computational Fluid Dynamics Model for Data Center With Active Tiles
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010902
.10.1115/1.4039025
46.
Khalili
,
S.
,
Tradat
,
M. I.
,
Nemati
,
K.
,
Seymour
,
M.
, and
Sammakia
,
B.
,
2018
, “
Impact of Tile Design on the Thermal Performance of Open and Enclosed Aisles
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010907
.10.1115/1.4039028
47.
Chu
,
W. X.
, and
Wang
,
C. C.
,
2019
, “
CFD investigation of Airflow Management in a Small Container Data Center
,”
IEEE Trans. Compon., Packag. Manuf. Technol
.
You do not currently have access to this content.