Abstract

This study presents a comprehensive assessment of the process-induced warpage of molded wafer for chip-first, face-down fan-out wafer-level packaging (FOWLP) during the fan-out fabrication process. A process-dependent simulation methodology is introduced, which integrates nonlinear finite element (FE) analysis and element death-birth technique. The effects of the cure-dependent volumetric shrinkage, geometric nonlinearity, and gravity loading on the process-induced warpage are examined. The study starts from experimental characterization of the temperature-dependent material properties of the applied liquid type epoxy molding compound (EMC) system through dynamic mechanical analysis (DMA) and thermal mechanical analysis. Furthermore, its cure state (heat of reaction and degree of cure (DOC)) during the compression molding process (CMP) is measured by differential scanning calorimetry (DSC) tests. Besides, the cure dependent-volumetric (chemical) shrinkages of the EMC system after the in-mold cure (IMC) and postmold cure (PMC) are experimentally determined by which the volumetric shrinkage at the gelation point is predicted through a linear extrapolation approach. To demonstrate the effectiveness of the proposed theoretical model, the prediction results are compared against the inline warpage measurement data. One possible cause of the asymmetric/nonaxisymmetric warpage is also addressed. Finally, the influences of some geometric dimensions on the warpage of the molded wafer are identified through parametric analysis.

References

1.
Su
,
Y.-F.
,
Chiang
,
K.-N.
, and
Liang
,
S. Y.
,
2017
, “
Design and Reliability Assessment of Novel 3D-IC Packaging
,”
J. Mech.
,
33
(
2
), pp.
193
203
.10.1017/jmech.2016.82
2.
Lau
,
J.
,
2019
, “
Recent Advances and Trends in Fan-Out Wafer/Panel-Level Packaging
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040801
.10.1115/1.4043341
3.
Brunnbauer
,
M.
,
Fürgut
,
E.
,
Beer
,
G.
,
Meyer
,
T.
,
Hedler
,
H.
,
Belonio
,
J.
,
Nomura
,
E.
,
Kiuchi
,
K.
, and
Kobayashi
,
K.
,
2006
, “
An Embedded Device Technology Based on a Molded Reconfigured Wafer
,”
IEEE 56th Electronic Components and Technology Conference
,
San Diego, CA
,
May 30–June 2
, pp.
547
551
.
4.
Keser
,
B.
,
Amrine
,
C.
,
Duong
,
T.
,
Fay
,
O.
,
Hayes
,
S.
,
Leal
,
G.
,
Lytle
,
W.
,
Mitchell
,
D.
, and
Wenzel
,
R.
,
2007
, “
The Redistributed Chip Package: A Breakthrough for Advanced Packaging
,”
IEEE 57th Electronic Components and Technology Conference
,
Reno, NV
,
May 29–June 1
, pp.
286
291
.
5.
Tseng
,
C.-F.
,
Liu
,
C.-S.
,
Wu
,
C.-H.
, and
Yu
,
D.
,
2016
, “
InFO (Wafer Level Integrated Fan-Out) Technology
,”
IEEE 66th Electronic Components and Technology Conference
,
Las Vegas, NV
,
May 31–June 3
, pp.
1
6
.
6.
Lee
,
C.-H.
,
Wu
,
K.-C.
, and
Chiang
,
K.-N.
,
2017
, “
A Novel Acceleration-Factor Equation for Packaging-Solder Joint Reliability Assessment at Different Thermal Cyclic Loading Rates
,”
J. Mech.
,
33
(
1
), pp.
35
40
.10.1017/jmech.2016.30
7.
Lee
,
H.-J.
,
Park
,
S.-M.
, and
Park
,
S.-J.
,
2016
, “
Minimization of Warpage for Wafer Level Package Using Response Surface Method
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
17
(
9
), pp.
1201
1207
.10.1007/s12541-016-0144-3
8.
Zhang
,
Q.
,
Lo
,
C. C.
,
Lee
,
R. S. W.
, and
Xu
,
W.
,
2018
, “
Correlation of Warpage Distribution With the Material Property Scattering for Warpage Range Prediction of PBGA Components
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
041005
.10.1115/1.4041064
9.
Deng
,
S.-S.
,
Hwang
,
S.-J.
, and
Lee
,
H.-H.
,
2013
, “
Warpage Prediction and Experiments of Fan-Out Wafer Level Package During Encapsulation Process
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
3
), pp.
452
458
.10.1109/TCPMT.2012.2228005
10.
Che
,
F. X.
,
Ho
,
D.
,
Ding
,
M. Z.
, and
Zhang
,
X.
,
2015
, “
Modeling and Design Solutions to Overcome Warpage Challenge for Fan-Out Wafer Level Packaging (FO-WLP) Technology
,”
IEEE 17th Electronics Packaging Technology Conference
,
Singapore
,
Dec. 2–4
, pp.
1
8
.
11.
Che
,
F. X.
,
Ho
,
D.
,
Ding
,
M. Z.
, and
MinWoo
,
D. R.
,
2016
, “
Study on Process Induced Wafer Level Warpage of Fan-Out Wafer Level Packaging
,”
IEEE 66th Electronic Components and Technology Conference
,
Las Vegas, NV
,
May 31–June 3
, pp.
1879
1885
.
12.
Lau
,
J. H.
,
Li
,
M.
,
Tian
,
D.
,
Fan
,
N.
,
Kuah
,
E.
,
Kai
,
W.
,
Li
,
M.
,
Hao
,
J.
,
Cheung
,
Y. M.
,
Li
,
Z.
,
Tan
,
K. H.
,
Beica
,
R.
,
Taylor
,
T.
,
Ko
,
C.-T.
,
Yang
,
H.
,
Chen
,
Y.-H.
,
Lim
,
S. P.
,
Lee
,
N. C.
,
Ran
,
J.
,
Xi
,
C.
,
Wee
,
K. S.
, and
Yong
,
Q.
,
2017
, “
Warpage and Thermal Characterization of Fan-Out Wafer-Level Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
10
), pp.
1729
1738
.10.1109/TCPMT.2017.2715185
13.
Lau
,
J. H.
,
Li
,
M.
,
Yang
,
L.
,
Li
,
M.
,
Xu
,
I.
,
Chen
,
T.
,
Chen
,
S.
,
Yong
,
Q. X.
,
Madhukumar
,
J. P.
,
Kai
,
W.
,
Fan
,
N.
,
Kuah
,
E.
,
Li
,
Z.
,
Tan
,
K. H.
,
Bao
,
W.
,
Lim
,
S. P.
,
Beica
,
R.
,
Ko
,
C.-T.
, and
Xi
,
C.
,
2018
, “
Warpage Measurements and Characterizations of Fan-Out Wafer-Level Packaging With Large Chips and Multiple Redistributed Layers
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
8
(
10
), pp.
1729
1737
.10.1109/TCPMT.2018.2848666
14.
Yeh
,
S.-S.
,
Lin
,
P.-Y.
,
Lee
,
K.-C.
,
Wang
,
J.-H.
,
Lin
,
W.-Y.
,
Yew
,
M.-C.
,
Lai
,
P.-C.
,
Hsu
,
C.-K.
,
Yang
,
C.-C.
, and
Jeng
,
S.-P.
,
2017
, “
Fan-Out Wafer Molding Process Optimization Using Cure-Dependent Viscoelastic Modeling and Characterizations
,”
12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)
,
Taipei, Taiwan
,
Oct. 25–27
, pp.
148
151
.
15.
Li
,
H.-Y.
,
Chen
,
A.
,
Peng
,
S.
,
Pan
,
G.
, and
Chen
,
S.
,
2017
, “
Warpage Tuning Study for Multi-Chip Last Fan Out Wafer Level Package
,”
IEEE 67th Electronic Components and Technology Conference
,
Orlando, FL
,
May 30–June 2
, pp.
1384
1391
.
16.
Lin
,
Y.-T.
,
Lai
,
W.-H.
,
Kao
,
C.-L.
,
Lou
,
J.-W.
,
Yang
,
P.-F.
,
Wang
,
C.-Y.
, and
Hseih
,
C.-A.
,
2016
, “
Wafer Warpage Experiments and Simulation for Fan-Out Chip on Substrate
,”
IEEE 66th Electronic Components and Technology Conference
,
Las Vegas, NV
,
May 31–June 3
, pp.
13
18
.
17.
Karkanas
,
P. I.
, and
Partridge
,
I. K.
,
2000
, “
Cure Modeling and Monitoring of Epoxy/Amine Resin Systems—I: Cure Kinetics Modeling
,”
J. Appl. Polym. Sci.
,
77
(
7
), pp.
1419
1431
.10.1002/1097-4628(20000815)77:7<1419::AID-APP3>3.0.CO;2-N
18.
Sadeghinia
,
M.
,
Jansen
,
K. M. B.
, and
Ernst
,
L. J.
,
2012
, “
Characterization and Modeling the Thermomechanical Cure-Dependent Properties of Epoxy Molding Compound
,”
Int. J. Adhes. Adhes.
,
32
, pp.
82
88
.10.1016/j.ijadhadh.2011.10.007
19.
Li
,
C.
,
Potter
,
K.
,
Wisnom
,
M. R.
, and
Stringer
,
G.
,
2004
, “
In-Situ Measurement of Cure Shrinkage of MY750 Epoxy Resin by a Novel Gravimetric Method
,”
Compos. Sci. Technol.
,
64
(
1
), pp.
55
64
.10.1016/S0266-3538(03)00199-4
20.
Yu
,
H.
,
Mhaisalkar
,
S. G.
, and
Wong
,
E. H.
,
2005
, “
Observations of Gelation and Vitrification of a Thermosetting Resin During the Evolution of Polymerization Shrinkage
,”
Macromol. Rapid Commun.
,
26
(
18
), pp.
1483
1487
.10.1002/marc.200500333
You do not currently have access to this content.