Abstract

This paper presents a new analytical filling time model to predict the flow of non-Newtonian underfill fluid during flip-chip encapsulation process. The current model is formulated based on the regional segregation approach, instead of the conventional porous media approximation. In this approach, the filling times were computed separately at different filling stages, before being summed up till the required filling distance. The non-Newtonian property of underfill fluid is modeled using the conventional power-law constitutive equation. Additionally, the spatial aspects of the underfill flow were incorporated into the present analysis. For instance, the evolution of underfill menisci from convex to concave was analytically developed and the contact line jump (CLJ) criterion was improved using minimal flow assumption. Upon validated with three distinct past underfill experiments, the current analytical model is found to have the best performance as it predicted the filling times with the least discrepancy among other existing filling time models. Quantitatively, the discrepancies were averagely reduced by an absolute value of at least 8.68% and 4.90%, respectively, for the first two set of validation studies. Generally, this model is particularly useful in manufacturing lines to estimate the process time of flip-chip underfill, as well as for the optimizations of process and package design.

References

1.
Lau
,
J. H.
,
2016
, “
Recent Advances and New Trends in Flip Chip Technology
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
030802
.10.1115/1.4034037
2.
Ardebili
,
H.
, and
Pecht
,
M. G.
,
2009
, “
Chapter 3—Encapsulation Process Technology
,”
Encapsulation Technologies for Electronic Applications
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
129
179
.
3.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2007
, “
Recent Advances in Modeling the Underfill Process in Flip-Chip Packaging
,”
Microelectron. J.
,
38
(
1
), pp.
67
75
.10.1016/j.mejo.2006.09.017
4.
Wang
,
J.
,
2005
, “
Flow Time Measurements for Underfills in Flip-Chip Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
366
370
.10.1109/TCAPT.2005.848488
5.
Ng
,
F. C.
,
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Abdul Aziz
,
M. S.
,
2016
, “
Effect of Thermocapillary Action in the Underfill Encapsulation of Multi-Stack Ball Grid Array
,”
Microelectron. Reliab.
,
66
, pp.
143
160
.10.1016/j.microrel.2016.10.001
6.
Lee
,
S. H.
,
Sung
,
J.
, and
Kim
,
S. E.
,
2010
, “
Dynamic Flow Measurement of Capillary Underfill Through a Bump Array in Flip Chip Package
,”
Microelectron. Reliab.
,
50
(
12
), pp.
2078
2083
.10.1016/j.microrel.2010.07.001
7.
Nguyen
,
L.
,
Quentin
,
C.
,
Fine
,
P.
,
Cobb
,
B.
,
Bayyuk
,
S.
,
Yang
,
H.
, and
Bidstrup-Allen
,
S. A.
,
1999
, “
Underfill of Flip Chip on Laminates: Simulation and Validation
,”
IEEE Trans. Compon. Packag. Technol.
,
22
(
2
), pp.
168
176
.10.1109/6144.774725
8.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2008
, “
Experimental Verification of Models for Underfill Flow Driven by Capillary Forces in Flip-Chip Packaging
,”
Microelectron. Reliab.
,
48
(
3
), pp.
425
430
.10.1016/j.microrel.2007.06.006
9.
Han
,
S.
, and
Wang
,
K. K.
,
1997
, “
Analysis of the Flow of Encapsulant During Underfill Encapsulation of Flip-Chips
,”
IEEE Trans. Compon., Packaging, Manuf. Technol.—PART B
,
20
(
4
), pp.
424
433
.
10.
Ng
,
F. C.
,
Abas
,
M. A.
,
Abdullah
,
M. Z.
,
Ishak
,
M. H. H.
, and
Chong
,
G. Y.
,
2017
, “
CUF Scaling Effect on Contact Angle and Threshold Pressure
,”
Soldering Surf. Mount Technol.
,
29
(
4
), pp.
173
190
.10.1108/SSMT-09-2016-0020
11.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.10.1103/PhysRev.17.273
12.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2018
, “
Effect of Solder Bump Shapes on Underfill Flow in Flip-Chip Encapsulation Using Analytical, Numerical and PIV Experimental Approaches
,”
Microelectron. Reliab.
,
81
, pp.
41
63
.10.1016/j.microrel.2017.12.025
13.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2005
, “
Influence of Transient Flow and Solder Bump Resistance on Underfill Process
,”
Microelectron. J.
,
36
(
8
), pp.
687
693
.10.1016/j.mejo.2005.05.022
14.
Young
,
W.-B.
,
2004
, “
Capillary Impregnation Into Cylinder Banks
,”
J. Colloid Interface Sci.
,
273
(
2
), pp.
576
580
.10.1016/j.jcis.2003.11.056
15.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2005
, “
An Analytical Model for Predicting the Underfill Flow Characteristics in Flip-Chip Encapsulation
,”
IEEE Trans. Adv. Packag.
,
28
(
3
), pp.
481
487
.10.1109/TADVP.2005.848385
16.
Young
,
W.-B.
,
2003
, “
Anisotropic Behavior of the Capillary Action in Flip Chip Underfill
,”
Microelectron. J.
,
34
(
11
), pp.
1031
1036
.10.1016/j.mejo.2003.09.001
17.
Young
,
W.-B.
, and
Yang
,
W.-L.
,
2002
, “
The Effect of Solder Bump Pitch on the Underfill Flow
,”
IEEE Trans. Adv. Packag.
,
25
(
4
), pp.
537
542
.10.1109/TADVP.2002.807564
18.
Yao
,
X. J.
,
Wang
,
Z. D.
, and
Zhang
,
W. J.
,
2104
, “
A New Analysis of the Capillary Driving Pressure for Underfill Flow in Flip-Chip Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
4
(
9
), pp.
1534
1544
.
19.
Yao
,
X. J.
,
Wang
,
Z. D.
, and
Zhang
,
W. J.
,
2104
, “
A New Model for Permeability of Porous Medium in the Case of Flip-Chip Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
4
(
8
), pp.
1265
1275
.
20.
Yao
,
X. J.
,
Fang
,
J. J.
, and
Zhang
,
W. J.
,
2018
, “
A Further Study on the Analytical Model for the Permeability in Flip-Chip Packaging
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
011001
.10.1115/1.4038391
21.
Yao
,
X. J.
, and
Zhang
,
W. J.
,
2018
, “
An Analytical Model for Permeability of Underfill Flow in Flip-Chip Packaging With Consideration of the Actual Specific Surface and Tortuosity
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
8
(
8
), pp.
1507
1514
.10.1109/TCPMT.2018.2843808
22.
Luo
,
W.
,
Liang
,
J.
,
Zhang
,
Y.
, and
Zhou
,
H.
,
2016
, “
An Analytical Model for the Underfill Flow Driven by Capillary Forces in Chip Packaging
,”
17th International Conference on Electronic Packaging Technology,
Wuhan, China, pp.
1381
1386
.
23.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2019
, “
Finite Volume Method Study on Contact Line Jump Phenomena and Dynamic Contact Angle of Underfill Flow in Flip-Chip of Various Bump Pitches
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
530
, p.
012012
.10.1088/1757-899X/530/1/012012
24.
Ng
,
F. C.
,
Abas
,
A.
,
Gan
,
Z. L.
,
Abdullah
,
M. Z.
,
Che Ani
,
F.
, and
Tura Ali
,
M. Y.
,
2017
, “
Discrete Phase Method Study of Ball Grid Array Underfill Process Using Nano-Silica Filler-Reinforced Composite-Encapsulant With Varying Filler Loadings
,”
Microelectron. Reliab.
,
72
, pp.
45
64
.10.1016/j.microrel.2017.03.034
25.
Young
,
W.-B.
,
2010
, “
Modeling of a non-Newtonian Flow Between Parallel Plates in a Flip Chip Encapsulation
,”
Microelectron. Reliab.
,
50
(
7
), pp.
995
999
.10.1016/j.microrel.2010.03.008
26.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Ariff
,
Z. M.
, and
Leong
,
W. C.
,
2012
, “
Effect of Stacking Chips and Inlet Positions on Void Formation in the Encapsulation of 3D Stacked Flip-Chip Package
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
670
680
.10.1016/j.icheatmasstransfer.2012.03.023
27.
Khor
,
C. Y.
, and
Abdullah
,
M. Z.
,
2013
, “
Analysis of Fluid/Structure Interaction: Influence of Silicon Chip Thickness in Molded Packaging
,”
Microelectron. Reliab.
,
53
(
2
), pp.
334
347
.10.1016/j.microrel.2012.08.008
28.
Shan
,
X.
, and
Chen
,
Y.
,
2018
, “
Experimental and Modeling Study on Viscosity of Encapsulant for Electronic Packaging
,”
Microelectron. Reliab.
,
80
, pp.
42
46
.10.1016/j.microrel.2017.11.011
You do not currently have access to this content.