Abstract

As electronic devices continue to shrink in size and increase in functionality, effective thermal management has become a critical bottleneck that hinders continued advancement. Two-phase cooling technologies are of growing interest for electronics cooling due to their high heat removal capacity and small thermal resistance (<0.1 k cm2/W). One typical example of a two-phase cooling method is droplet evaporation, which can provide a high heat transfer coefficient with low superheat. While droplet evaporation has been studied extensively and used in many practical cooling applications (e.g.,, spray cooling), the relevant work has been confined to spherical droplets with axisymmetric geometries. A rationally designed evaporation platform that yields asymmetric meniscus droplets can potentially achieve larger meniscus curvatures, which gives rise to higher vapor concentration gradients along the contact line region, and therefore, yields higher evaporation rates. In this study, we develop a numerical model to investigate the evaporation behavior of asymmetrical microdroplets suspended on a porous micropillar structure. The equilibrium profiles and mass transport characteristics of droplets with circular, triangular, and square contact shapes are explored using the volume of fluid (VOF) method. The evaporative mass transport at the liquid–vapor interface is modeled using a simplified Schrage model. The results show highly nonuniform mass transport characteristics for asymmetrical microdroplets, where a higher local evaporation rate is observed near the locations where the meniscus has high curvature. This phenomenon is attributed to a higher local vapor concentration gradient that drives faster vapor diffusion at more curved regions, similar to a lightning rod exhibiting a strong electric field along a highly curved surface. By using contact line confinement to artificially tune the droplet into a more curved geometry, we find that the total evaporation rate from a triangular-based droplet is enhanced by 13% compared to a spherical droplet with the same perimeter and liquid–vapor interfacial area. Such a finding can guide the design and optimization of geometric features to improve evaporation in advanced microcooling devices.

References

1.
Lin
,
Z.
, and
Granick
,
S.
,
2005
, “
Patterns Formed by Droplet Evaporation From a Restricted Geometry
,”
J. Am. Chem. Soc.
,
127
(
9
), pp.
2816
2817
.10.1021/ja044792z
2.
Pawlowski
,
L.
,
2008
,
The Science and Engineering of Thermal Spray Coatings
,
Wiley
,
Hoboken, NJ
.
3.
Kim
,
H.
,
Boulogne
,
F.
,
Um
,
E.
,
Jacobi
,
I.
,
Button
,
E.
, and
Stone
,
H. A.
,
2016
, “
Controlled Uniform Coating From the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules
,”
Phys. Rev. Lett.
,
116
(
12
), p.
124501
.10.1103/PhysRevLett.116.124501
4.
Park
,
J.
, and
Moon
,
J.
,
2006
, “
Control of Colloidal Particle Deposit Patterns Within Picoliter Droplets Ejected by Ink-Jet Printing
,”
Langmuir
,
22
(
8
), pp.
3506
3513
.10.1021/la053450j
5.
Lim
,
T.
,
Han
,
S.
,
Chung
,
J.
,
Chung
,
J. T.
,
Ko
,
S.
, and
Grigoropoulos
,
C. P.
,
2009
, “
Experimental Study on Spreading and Evaporation of Inkjet Printed Pico-Liter Droplet on a Heated Substrate
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
431
441
.10.1016/j.ijheatmasstransfer.2008.05.028
6.
Dugas
,
V.
,
Broutin
,
J.
, and
Souteyrand
,
E.
,
2005
, “
Droplet Evaporation Study Applied to DNA Chip Manufacturing
,”
Langmuir
,
21
(
20
), pp.
9130
9136
.10.1021/la050764y
7.
Ebrahimi
,
A.
,
Dak
,
P.
,
Salm
,
E.
,
Dash
,
S.
,
Garimella
,
S. V.
,
Bashir
,
R.
, and
Alam
,
M. A.
,
2013
, “
Nanotextured Superhydrophobic Electrodes Enable Detection of Attomolar-Scale DNA Concentration Within a Droplet by Non-Faradaic Impedance Spectroscopy
,”
Lab Chip
,
13
(
21
), pp.
4248
4256
.10.1039/c3lc50517k
8.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
9.
Tissot
,
J.
,
Boulet
,
P.
,
Trinquet
,
F.
,
Fournaison
,
L.
, and
Macchi-Tejeda
,
H.
,
2011
, “
Air Cooling by Evaporating Droplets in the Upward Flow of a Condenser
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2122
2131
.10.1016/j.ijthermalsci.2011.06.004
10.
Kumari
,
N.
, and
Garimella
,
S. V.
,
2011
, “
Characterization of the Heat Transfer Accompanying Electrowetting or Gravity-Induced Droplet Motion
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4037
4050
.10.1016/j.ijheatmasstransfer.2011.04.015
11.
Mahmud
,
M. A.
, and
MacDonald
,
B. D.
,
2017
, “
Experimental Investigation of Interfacial Energy Transport in an Evaporating Sessile Droplet for Evaporative Cooling Applications
,”
Phys. Rev. E
,
95
(
1
), p.
012609
.10.1103/PhysRevE.95.012609
12.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
.10.1016/j.mattod.2014.04.003
13.
Bar-Cohen
,
A.
,
2013
, “
Gen-3 Thermal Management Technology: Role of Microchannels and Nanostructures in an Embedded Cooling Paradigm
,”
J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020907
.10.1115/1.4023898
14.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2015
, “
Fundamental Cooling Limits for High Power Density Gallium Nitride Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
6
), pp.
737
744
.10.1109/TCPMT.2015.2433132
15.
Agonafer
,
D. D.
,
Lee
,
H.
,
Vasquez
,
P. A.
,
Won
,
Y.
,
Jung
,
K. W.
,
Lingamneni
,
S.
,
Ma
,
B.
,
Shan
,
L.
,
Shuai
,
S.
,
Du
,
Z.
,
Maitra
,
T.
,
Palko
,
J. W.
, and
Goodson
,
K. E.
,
2018
, “
Porous Micropillar Structures for Retaining Low Surface Tension Liquids
,”
J. Colloid Interface Sci.
,
514
, pp.
316
327
.10.1016/j.jcis.2017.12.011
16.
Mandel
,
R.
,
Shooshtari
,
A.
, and
Ohadi
,
M.
,
2017
, “
Thin-Film Evaporation on Microgrooved Heatsinks
,”
Numer. Heat Transfer, Part A: Appl.
,
71
(
2
), pp.
111
127
.10.1080/10407782.2016.1257300
17.
Tartarini
,
P.
, Corticelli, M. A., and Tarozzi, L.,
2009
, “
Dropwise
Cooling: Experimental Tests by Infrared Thermography and Numerical Simulations,”
Appl. Therm. Eng.
, 29(7), pp.
1391
1397
.10.1016/j.applthermaleng.2008.06.011
18.
Hu
,
H.
, and
Larson
,
R. G.
,
2002
, “
Evaporation of a Sessile Droplet on a Substrate
,”
J. Phys. Chem. B
,
106
(
6
), pp.
1334
1344
.10.1021/jp0118322
19.
Semenov
,
S.
,
Starov
,
V.
,
Rubio
,
R.
, and
Velarde
,
M.
,
2010
, “
Instantaneous Distribution of Fluxes in the Course of Evaporation of Sessile Liquid Droplets: Computer Simulations
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
372
(
1–3
), pp.
127
134
.10.1016/j.colsurfa.2010.10.004
20.
Nguyen
,
T. A.
,
Nguyen
,
A. V.
,
Hampton
,
M. A.
,
Xu
,
Z. P.
,
Huang
,
L.
, and
Rudolph
,
V.
,
2012
, “
Theoretical and Experimental Analysis of Droplet Evaporation on Solid Surfaces
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
522
529
.10.1016/j.ces.2011.11.009
21.
David
,
S.
,
Sefiane
,
K.
, and
Tadrist
,
L.
,
2007
, “
Experimental Investigation of the Effect of Thermal Properties of the Substrate in the Wetting and Evaporation of Sessile Drops
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
298
(
1–2
), pp.
108
114
.10.1016/j.colsurfa.2006.12.018
22.
Ma
,
B.
,
Shan
,
L.
,
Li
,
J.
,
Dogruoz
,
B.
, and
Agonafer
,
D.
,
2019
, “
Molecular Dynamic Simulation of the Effect of Nanocoating on Two-Phase Evaporative Heat and Mass Transfer
,”
18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Las Vegas, NV, May 28–31, pp.
226
231
.
23.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Academic Press
,
New York
.
24.
Zientara
,
M.
,
Jakubczyk
,
D.
,
Kolwas
,
K.
, and
Kolwas
,
M.
,
2008
, “
Temperature Dependence of the Evaporation Coefficient of Water in Air and Nitrogen Under Atmospheric Pressure: Study in Water Droplets
,”
J. Phys. Chem. A
,
112
(
23
), pp.
5152
5158
.10.1021/jp7114324
25.
Bourges-Monnier
,
C.
, and
Shanahan
,
M.
,
1995
, “
Influence of Evaporation on Contact Angle
,”
Langmuir
,
11
(
7
), pp.
2820
2829
.10.1021/la00007a076
26.
Picknett
,
R.
, and
Bexon
,
R.
,
1977
, “
The Evaporation of Sessile or Pendant Drops in Still Air
,”
J. Colloid Interface Sci.
,
61
(
2
), pp.
336
350
.10.1016/0021-9797(77)90396-4
27.
Carle
,
F.
,
Sobac
,
B.
, and
Brutin
,
D.
,
2013
, “
Experimental Evidence of the Atmospheric Convective Transport Contribution to Sessile Droplet Evaporation
,”
Appl. Phys. Lett.
,
102
(
6
), p.
061603
.10.1063/1.4792058
28.
Hu
,
H.
, and
Larson
,
R. G.
,
2005
, “
Analysis of the Microfluid Flow in an Evaporating Sessile Droplet
,”
Langmuir
,
21
(
9
), pp.
3963
3971
.10.1021/la047528s
29.
Hu
,
H.
, and
Larson
,
R. G.
,
2005
, “
Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet
,”
Langmuir
,
21
(
9
), pp.
3972
3980
.10.1021/la0475270
30.
Hu
,
H.
, and
Larson
,
R. G.
,
2006
, “
Marangoni Effect Reverses Coffee-Ring Depositions
,”
J. Phys. Chem. B
,
110
(
14
), pp.
7090
7094
.10.1021/jp0609232
31.
Coutant
,
R. W.
, and
Penski
,
E. C.
,
1982
, “
Experimental Evaluation of Mass Transfer From Sessile Drops
,”
Ind. Eng. Chem. Fundamentals
,
21
(
3
), pp.
250
254
.10.1021/i100007a010
32.
Baines
,
W. D.
, and
James
,
D. F.
,
1994
, “
Evaporation of a Droplet on a Surface
,”
Ind. Eng. Chem. Res.
,
33
(
2
), pp.
411
416
.10.1021/ie00026a036
33.
Rowan
,
S. M.
,
Newton
,
M.
, and
McHale
,
G.
,
1995
, “
Evaporation of Microdroplets and the Wetting of Solid Surfaces
,”
J. Phys. Chem.
,
99
(
35
), pp.
13268
13271
.10.1021/j100035a034
34.
Erbil
,
H. Y.
, and
Meric
,
R. A.
,
1997
, “
Evaporation of Sessile Drops on Polymer Surfaces: Ellipsoidal Cap Geometry
,”
J. Phys. Chem. B
,
101
(
35
), pp.
6867
6873
.10.1021/jp970328n
35.
Elbaum
,
M.
,
Lipson
,
S.
, and
Wettlaufer
,
J.
,
1995
, “
Evaporation Preempts Complete Wetting
,”
EPL (Europhys. Lett.)
,
29
(
6
), p.
457
.10.1209/0295-5075/29/6/005
36.
Popov
,
Y. O.
,
2005
, “
Evaporative Deposition Patterns: Spatial Dimensions of the Deposit
,”
Phys. Rev. E
,
71
(
3
), p.
036313
.10.1103/PhysRevE.71.036313
37.
Gleason
,
K.
, and
Putnam
,
S. A.
,
2014
, “
Microdroplet Evaporation With a Forced Pinned Contact Line
,”
Langmuir
,
30
(
34
), pp.
10548
10555
.10.1021/la501770g
38.
Dash
,
S.
, and
Garimella
,
S. V.
,
2014
, “
Droplet Evaporation on Heated Hydrophobic and Superhydrophobic Surfaces
,”
Phys. Rev. E
,
89
(
4
), p.
042402
.10.1103/PhysRevE.89.042402
39.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
,
Columbia University Press
,
New York
.
40.
Liang
,
Q.
,
Raj
,
R.
,
Adera
,
S.
,
Somasundaram
,
S.
,
Tan
,
C. S.
, and
Wang
,
E. N.
,
2013
, “
Experiment and Modeling of Microstructured Capillary Wicks for Thermal Management of Electronics
,” IEEE 15th, Electronics Packaging Technology Conference (
EPTC 2013
), Singapore, Dec. 11–13, pp.
592
597
.10.1109/EPTC.2013.6745789
41.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.10.1016/j.ijheatmasstransfer.2007.01.052
42.
Dhavaleswarapu
,
H. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2012
, “
Numerical Investigation of an Evaporating Meniscus in a Channel
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
915
924
.10.1016/j.ijheatmasstransfer.2011.10.017
43.
Wayner
,
P.
, Jr.
,
Kao
,
Y.
, and
LaCroix
,
L.
,
1976
, “
The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
487
492
.10.1016/0017-9310(76)90161-7
44.
Panchamgam
,
S. S.
,
Chatterjee
,
A.
,
Plawsky
,
J. L.
, and
Wayner
,
P. C.
, Jr
,
2008
, “
Comprehensive Experimental and Theoretical Study of Fluid Flow and Heat Transfer in a Microscopic Evaporating Meniscus in a Miniature Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5368
5379
.10.1016/j.ijheatmasstransfer.2008.03.023
45.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6317
6322
.10.1016/j.ijheatmasstransfer.2008.06.011
46.
Tanasawa
,
I.
,
1991
, “
Advances in Condensation Heat Transfer
,”
Adv. Heat Transfer
,
21
, pp.
55
139
.10.1016/S0065-2717(08)70334-4
47.
Raj
,
R.
,
Adera
,
S.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2014
, “
High-Resolution Liquid Patterns Via Three-Dimensional Droplet Shape Control
,”
Nat. Commun.
,
5
(
1
), p.
4975
.10.1038/ncomms5975
48.
Chu
,
K.-H.
,
Xiao
,
R.
, and
Wang
,
E. N.
,
2010
, “
Uni-Directional Liquid Spreading on Asymmetric Nanostructured Surfaces
,”
Nat. Mater.
,
9
(
5
), p.
413
.10.1038/nmat2726
49.
Kim
,
J. Y.
,
Hwang
,
I. G.
, and
Weon
,
B. M.
,
2017
, “
Evaporation of Inclined Water Droplets
,”
Sci. Rep.
,
7
(
1
), p.
42848
.10.1038/srep42848
50.
Ma
,
B.
,
Shan
,
L.
,
Dogruoz
,
M. B.
, and
Agonafer
,
D.
,
2019
, “
Evolution of Microdroplet Morphology Confined on Asymmetric Micropillar Structures
,”
Langmuir.
,
35
(
37
), p.
12264
.10.1021/acs.langmuir.9b01410
51.
Shan
,
L.
,
Li
,
J.
,
Ma
,
B.
,
Jiang
,
X.
,
Dogruoz
,
B.
, and
Agonafer
,
D.
,
2019
, “
Experimental Investigation of Evaporation From Asymmetric Microdroplets Confined on Heated Micropillar Structures
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109889
.10.1016/j.expthermflusci.2019.109889
52.
Shan
,
L.
,
Ma
,
B.
,
Li
,
J.
,
Dogruoz
,
B.
, and
Agonafer
,
D.
,
2019
, “
Investigation of the Evaporation Heat Transfer Mechanism of a Non-Axisymmetric Droplet Confined on a Heated Micropillar Structure
,”
Int. J. Heat Mass Transfer
,
141
, pp.
191
203
.10.1016/j.ijheatmasstransfer.2019.06.042
53.
Sáenz
,
P.
,
Wray
,
A.
,
Che
,
Z.
,
Matar
,
O.
,
Valluri
,
P.
,
Kim
,
J.
, and
Sefiane
,
K.
,
2017
, “
Dynamics and Universal Scaling Law in Geometrically-Controlled Sessile Drop Evaporation
,”
Nat. Commun.
,
8
(
1
), p. 14783.10.1038/ncomms14783
54.
Hertz
,
H.
,
1882
, “
Ueber Die Verdunstung Der Flüssigkeiten, Insbesondere Des Quecksilbers, im Luftleeren Raume
,”
Annalen Der Phys.
,
253
(
10
), pp.
177
193
.10.1002/andp.18822531002
55.
Knudsen
,
M.
,
1915
, “
Die Maximale Verdampfungsgeschwindigkeit Des Quecksilbers
,”
Annalen Der Phys.
,
352
(
13
), pp.
697
708
.10.1002/andp.19153521306
56.
Knudsen
,
M.
, and Partington, J. R.,
1950
,
The Kinetic Theory of Gases: Some Modern Aspects
, Vol.
39
, ACS, Washington, DC.
57.
Marek
,
R.
, and
Straub
,
J.
,
2001
, “
Analysis of the Evaporation Coefficient and the Condensation Coefficient of Water
,”
Int. J. Heat Mass Transfer
,
44
(
1
), pp.
39
53
.10.1016/S0017-9310(00)00086-7
58.
Hołyst
,
R.
,
Litniewski
,
M.
, and
Jakubczyk
,
D.
,
2015
, “
A Molecular Dynamics Test of the Hertz–Knudsen Equation for Evaporating Liquids
,”
Soft Matter
,
11
(
36
), pp.
7201
7206
.10.1039/C5SM01508A
59.
Persad
,
A. H.
, and
Ward
,
C. A.
,
2016
, “
Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation
,”
Chem. Rev.
,
116
(
14
), pp.
7727
7767
.10.1021/acs.chemrev.5b00511
60.
Julin
,
J.
,
Shiraiwa
,
M.
,
Miles
,
R. E. H.
,
Reid
,
J. P.
,
Pöschl
,
U.
, and
Riipinen
,
I.
,
2013
, “
Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models
,”
J. Phys. Chem. A
,
117
(
2
), pp.
410
420
.10.1021/jp310594e
61.
Davidovits
,
P.
,
Worsnop
,
D. R.
,
Jayne
,
J. T.
,
Kolb
,
C. E.
,
Winkler
,
P.
,
Vrtala
,
A.
,
Wagner
,
P. E.
,
Kulmala
,
M.
,
Lehtinen
,
K. E. J.
,
Vesala
,
T.
, and
Mozurkewich
,
M.
,
2004
, “
Mass Accommodation Coefficient of Water Vapor on Liquid Water
,”
Geophys. Res. Lett.
,
31
(
22
), pp.
1
4
.10.1029/2004GL020835
62.
Laaksonen
,
A.
,
Vesala
,
T.
,
Kulmala
,
M.
,
Winkler
,
P.
, and
Wagner
,
P.
,
2005
, “
Commentary on Cloud Modelling and the Mass Accommodation Coefficient of Water
,”
Atmos. Chem. Phys.
,
5
(
2
), pp.
461
464
.10.5194/acp-5-461-2005
63.
Morita
,
A.
,
Sugiyama
,
M.
,
Kameda
,
H.
,
Koda
,
S.
, and
Hanson
,
D. R.
,
2004
, “
Mass Accommodation Coefficient of Water: Molecular Dynamics Simulation and Revised Analysis of Droplet Train/Flow Reactor Experiment
,”
J. Phys. Chem. B
,
108
(
26
), pp.
9111
9120
.10.1021/jp030479s
64.
Vieceli
,
J.
,
Roeselová
,
M.
, and
Tobias
,
D. J.
,
2004
, “
Accommodation Coefficients for Water Vapor at the Air/Water Interface
,”
Chem. Phys. Lett.
,
393
(
1–3
), pp.
249
255
.10.1016/j.cplett.2004.06.038
65.
Noh
,
W. F.
, and
Woodward
,
P.
,
1976
, “
SLIC (Simple Line Interface Calculation)
,”
Fifth International Conference on Numerical Methods in Fluid Dynamics
, Enschede, The Netherlands, June 28–July 2, pp.
330
340
.
66.
ANSYS,
2018
, “ANSYS® Fluent v18.1,” ANSYS Inc., Canonsburg, PA.
67.
Alty
,
T.
, and
Mackay
,
C.
,
1935
, “
The Accommodation Coefficient and the Evaporation Coefficient of Water
,”
Proc. R. Soc. Lond. A
,
149
(
866
), pp.
104
116
.10.1098/rspa.1935.0050
68.
Osborne
,
K. L.
,
2009
,
Temperature-Dependence of the Contact Angle of Water on Graphite, Silicon, and Gold
,
Worcester Polytechnic Institute
,
Worcester, MA
.
69.
Brakke
,
K. A.
,
1992
, “
The Surface Evolver
,”
Exp. Math.
,
1
(
2
), pp.
141
165
.10.1080/10586458.1992.10504253
70.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
71.
Shams
,
M.
,
Raeini
,
A. Q.
,
Blunt
,
M. J.
, and
Bijeljic
,
B.
,
2018
, “
A Numerical Model of Two-Phase Flow at the Micro-Scale Using the Volume-of-Fluid Method
,”
J. Comput. Phys.
,
357
, pp.
159
182
.10.1016/j.jcp.2017.12.027
72.
ANSYS,
2018
, “ANSYS® ICEM CFD v18.1,” ANSYS Inc., Canonsburg, PA.
73.
Ubbink
,
O.
, and
Issa
,
R.
,
1999
, “
A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
,
153
(
1
), pp.
26
50
.10.1006/jcph.1999.6276
74.
Mathworks,
1998
, “MATLAB User Guide,” The Mathworks Inc., Natick, MA.
75.
Li
,
J.
,
Shan
,
L.
,
Ma
,
B.
,
Jiang
,
X.
,
Solomon
,
A.
,
Iyengar
,
M.
,
Padilla
,
J.
, and
Agonafer
,
D.
,
2019
, “
Investigation of the Confinement Effect on the Evaporation Behavior of a Droplet Pinned on a Micropillar Structure
,”
J. Colloid Interface Sci.
,
555
, pp.
583
594
.10.1016/j.jcis.2019.07.096
76.
Duan
,
F.
, and
Ward
,
C.
,
2009
, “
Investigation of Local Evaporation Flux and Vapor-Phase Pressure at an Evaporative Droplet Interface
,”
Langmuir
,
25
(
13
), pp.
7424
7431
.10.1021/la900337j
77.
Dehaeck
,
S.
,
Rednikov
,
A.
, and
Colinet
,
P.
,
2014
, “
Vapor-Based Interferometric Measurement of Local Evaporation Rate and Interfacial Temperature of Evaporating Droplets
,”
Langmuir
,
30
(
8
), pp.
2002
2008
.10.1021/la404999z
You do not currently have access to this content.