Two self-developed control schemes, ON/OFF and supervisory control and data acquisition (SCADA), were applied on a hybrid evaporative and direct expansion (DX)-based model data center cooling system to assess the impact of controls on reliability and energy efficiency. These control schemes can be applied independently or collectively, thereby saving the energy spent on mechanical refrigeration by using airside economization and/or evaporative cooling. Various combinations of system-level controls and component-level controls are compared to a baseline no-controls case. The results show that reliability is consistently met by employing only sophisticated component-level controls. However, the recommended conditions are met approximately 50% of the simulated time by employing system-level controls only (i.e., SCADA) but with a reduction in data center cooling system power usage effectiveness (PUE) values from 3.76 to 1.42. Moreover, the recommended conditions are met at all averaged times with an even lower cooling system PUE of 1.13 by combining system-level controls only (SCADA and ON/OFF controls). Thus, the study introduces a simple method to compare control schemes for reliable and energy-efficient data center operation. The work also highlights a potential source of capital expenses and operating expenses savings for data center owners by switching from expensive built-in component-based controls to inexpensive, yet effective, system-based controls that can easily be imbedded into existing data center infrastructure systems management.

References

References
1.
Shehabi
,
A.
,
Smith
,
S.
,
Sartor
,
D.
,
Brown
,
R.
,
Herrlin
,
M.
,
Koomey
,
J.
,
Masanet
,
E.
,
Horner
,
N.
,
Azevedo
,
I.
, and
Lintner
,
W.
,
2016
, “
United States Data Center Energy Usage Report
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No.
LBNL-1005775
.https://eta.lbl.gov/publications/united-states-data-center-energy
2.
Alissa
,
H. A.
,
2015
, “
Innovative Approaches of Experimentally Guided CFD Modeling for Data Centers
,” 31st Thermal Measurement, Modeling & Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
176
184
.
3.
Iyengar
,
M.
,
Schmidt
,
R. R.
,
Hamann
,
H.
, and
VanGilder
,
J.
,
2007
, “
Comparison Between Numerical and Experimental Temperature Distributions in a Small Data Center Test Cell
,”
ASME
Paper No. IPACK2007-33508.
4.
Iyengar
,
M.
, and
Schmidt
,
R. R.
,
2009
, “
Analytical Modeling for Thermodynamic Characterization of Data Center Cooling Systems
,”
ASME, J. Electron. Packag.
,
131
(
2
), p.
021009
.
5.
Tsuda
,
A.
,
Mino
,
Y.
, and
Nishimura
,
S.
,
2017
, “
Comparison of ICT Equipment Air-Intake Temperatures Between Cold Aisle Containment and Hot Aisle Containment in Datacenters
,”
IEEE International Telecommunications Energy Conference
(
INTELEC
), Broadbeach, QLD, Australia, Oct. 22–26, pp.
59
65
.
6.
ASHRAE,
2010
,
Save Energy Now Presentation Series
,”
ASHRAE Technical Committee 9.9
,
Dallas, TX
.
7.
Durand-Estabe
,
B.
,
Le Bot
,
C.
,
Mancos
,
J. N.
, and
Arquis
,
E.
,
2014
, “
Simulation of a Temperature Adaptive Control Strategy for an IWSE Economizer in a Data Center
,”
Appl. Energy
,
134
, pp.
45
56
.
8.
Jonge
,
D. B.
,
2017
, “
Trial and Application of Direct Evaporative Cooling at Telstra's Information and Communication Technology Centers
,”
IEEE International Telecommunications Energy Conference
(
INTELEC
), Broadbeach, QLD, Australia, Oct. 22–26, pp.
66
70
.
9.
Parolini
,
L.
,
Sinopoli
,
B.
,
Krogh
,
B. H.
, and
Wang
,
Z.
,
2012
, “
A Cyber-Physical Systems Approach to Data Center Modeling and Control for Energy Efficiency
,”
Proc. IEEE
,
100
(
1
), pp.
254
268
.
10.
Xu
,
H. G.
,
He
,
J. P.
, and
Li
,
Y. Q.
,
2012
, “
Energy Management and Control Strategy for DC Micro-Grid in Data Center
,”
IEEE
Fifth International Conference on Electricity Distribution
, Shanghai, China, Sept. 5–6, pp.
1
6
.
11.
Fulpagre
,
Y.
, and
Bhargav
,
A.
,
2015
, “
Advances in Data Center Thermal Management
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
981
996
.
12.
Boucher
,
T. D.
,
Auslander
,
D. M.
,
Bash
,
C. E.
,
Federspiel
,
C. C.
, and
Patel
,
C. D.
,
2006
, “
Viability of Dynamic Cooling Control in a Data Center Environment
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
137
144
.
13.
Lin
,
M.
,
Shao
,
S.
,
Zhang
,
X.
,
VanGilder
,
J. W.
,
Avelar
,
V.
, and
Hu
,
X.
,
2014
, “
Strategies for Data Center Temperature Control During a Cooling System Outage
,”
Energy Build.
,
73
, pp.
146
152
.
14.
Chen
,
J.
,
Tan
,
R.
,
Xing
,
G.
, and
Wang
,
X.
,
2014
, “
PTEC: A System for Predictive Thermal and Energy Control in Data Centers
,”
IEEE
Real-Time Systems Symposium, Rome, Italy
, Dec. 2–5, pp.
218
227
.
15.
Walsh
,
E. J.
,
Breen
,
T. J.
,
Punch
,
J.
,
Shah
,
A. J.
, and
Bash
,
C. E.
,
2011
, “
From Chip to Cooling Tower Data Center Modeling: Influence of Chip Temperature Control Philosophy
,”
ASME J. Electron. Packag.
,
133
(
3
), p.
031008
.
16.
Shah
,
A. J.
,
Carey
,
V. P.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2004
, “
An Exergy-Based Control Strategy for Computer Room Air-Conditioning Units in Data Centers
,”
ASME
Paper No. IMECE2004-61384.
17.
Mohsenian
,
G.
,
Khalili
,
S.
, and
Sammakia
,
B.
,
2019
, “
A Design Methodology for Controlling Local Airflow Delivery in Data Centers Using Air Dampers
,”
IEEE ITherm Conference
, Las Vegas, NV, May 28–31, p.
431
.
18.
VanGilder
,
J.
,
Zhang
,
Y.
,
Linder
,
S.
, and
Condor
,
M.
,
2019
, “
Balancing Cooling and IT Airflow With Dampers in Ceiling-Ducted Hot-Aisle Containment in Data Centers
,”
IEEE ITherm Conference
, Las Vegas, NV, May 28–31, p.
142
.
19.
Baxendale
,
M.
,
Athavale
,
J.
,
Robertson
,
S.
, and
Joshi
,
Y.
,
2019
, “
Data Center Temperature Control Using PI System and MATLAB
,”
IEEE ITherm Conference
, Las Vegas, NV, May 28–31, Paper No. 397.
20.
Wemhoff
,
A. P.
,
del Valle
,
M.
,
Abbasi
,
K.
, and
Ortega
,
A.
,
2013
, “
Thermodynamic Modeling of Data Center Cooling Systems
,”
ASME
Paper No. IPACK2013-73116.
21.
Steinbrecher
,
R. A.
, and
Schmidt
,
R.
,
2011
, “
Data Center Environments ASHRAE's Evolving Thermal Guidelines
,”
ASHRAE J.
,
53
(12), pp.
42
49
.
22.
Warke
,
D. A.
, and
Deshmukh
,
S. J.
,
2017
, “
Experimental Analysis of Cellulose Cooling Pads Used in Evaporative Coolers
,”
Int. J. Energy Sci. Eng.
,
3
(
4
), pp.
37
43
.http://files.aiscience.org/journal/article/pdf/70180051.pdf
23.
Joshi
,
Y.
, and
Kumar
,
P.
,
2012
,
Energy Efficient Thermal Management of Data Centers
,
1st ed.
,
Springer
, New York, p.
111
.
24.
Incropera
,
F. P.
,
DeWitt
,
D.
,
Bergman
,
T.
, and
Lavine
,
A.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
, Hoboken, NJ, p.
689
.
25.
Bhalerao
,
A.
,
Fouladi
,
K.
,
Silva-Llanca
,
L.
, and
Wemhoff
,
A. P.
,
2016
, “
Rapid Predictions of Exergy Destruction in Data Centers Due to Airflow Mixing
,”
Numer. Heat Transfer, Part A: Appl.
,
70
(
1
), pp.
48
63
.
26.
Grote
,
K.-H.
, and
Antonsson
,
E.
,
2009
, “
Damper Applications Guide
,”
Handbook of Mechanical Engineering Part B: Applications
,
Springer
, Berlin.
27.
Engineered Software Inc., 2017, “Modeling a Damper,” Modeling Piping System Devices, Engineered Software Inc., accessed July 5, 2019, http://kb.eng-software.com/display/ESKB/Modeling+a+Damper
28.
Crane Co. Staff
,
2009
,
Flow of Fluids Through Valves, Fittings and Pipe [Paper No. 410]
,
Crane
Company, Stamford, CT, Chap. 6.
29.
Wilcox, S., 2007, “Typical Meteorological Year Weather Database
,” National Renewable Energy Laboratory, Division of Department of Energy, Golden, CO, Sponsored Under Contract No. DE-AC36-08GO28308, accessed July 5, 2019, http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
30.
Brown
,
K.
,
Torell
,
W.
, and
Avelar
,
V.
,
2014
, “
Choosing the Optimal Data Center Power Density
,” Schneider White, Boston, MA, p.
2
.
31.
Ibrahim
,
M.
,
Shrivastava
,
S.
,
Sammakia
,
B.
, and
Ghose
,
K.
,
2012
, “
Thermal Mass Characterization of a Server at Different Fan Speeds
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp.
457
455
.
32.
Pardey
,
Z. M.
,
Demetriou
,
D. W.
,
Erden
,
H. S.
,
VanGilder
,
J. W.
,
Khalifa
,
H. E.
, and
Schmidt
,
R. R.
,
2015
, “
Proposal for Standard Compact Server Model for Transient Data Center Simulations
,”
ASHRAE Trans.
,
121
(
1
), pp.
413
421
.https://experts.syr.edu/en/publications/proposal-for-standard-compact-server-model-for-transient-data-cen
33.
Belady
,
C.
,
Kelkar
,
K. M.
, and
Patankar
,
S. V.
,
1995
, “
Improved Productivity With Use of Flow Network Modeling (FNM) in Electronic Packaging
,”
Electron. Cooling
,
5
(
1
), pp.
36
40
.http://inresllc.com/assets/files/macroflow/MF01-Elec-Cooling-Paper.pdf
34.
Wemhoff
,
A. P.
, and
Frank
,
A.
,
2010
, “
Predictions of Energy Savings in HVAC Systems by Lumped Models
,”
J. Energy Build.
,
42
(
10
), pp.
1807
1814
.
35.
Fried
,
E.
, and
Idelchik
,
I. E.
,
1989
,
Flow Resistance: A Design Guide for Engineers
,
1st ed.
,
Taylor & Francis
, New York.
36.
Faul
,
A. C.
,
2016
,
A Concise Introduction to Numerical Analysis
,
CRC Press
, Boca Raton, FL.
37.
White
,
F.
,
2001
,
Fluid Mechanics
,
7th ed.
,
McGraw-Hill
, New York, p.
769
.
You do not currently have access to this content.