This paper theoretically investigates the relationships among factors that affect the temperature rise of server racks and experimentally tests the influence of variable space contained arrangements on the thermal performance. To express the flow and heat transfer process of cold air in servers and analyze the critical factors affecting the temperature rise, a simplified mathematical model representing servers is developed using experimental results. An experiment is conducted within a modular data center in which cold air is supplied from a raised floor. The experiment employed a variable space of cold aisle containment and measured the resulting temperature rise, as well as pressure difference of racks and other parameters, in the simplified mathematical model. By comparing the experimental results and theoretical calculation, the theoretical model is proved to be reasonable and valid. The model predicts that the critical factors affecting the temperature rise of racks consist of static and dynamic pressure difference, total pressure of the fans, geometric structure, power consumption, resistance of doors, and opening area of servers. The result shows that the factor affected by the cold aisle contained system is the static pressure, while for the dynamic pressure difference, the contained architecture has a slight positive effect. Although the average temperature rise is quite decreased in the contained system, the static pressure distribution is nonuniform. A half-contained system which reduced contained space ratio to 50% is measured to cause a 22% increase of the static pressure difference, making a more uniform temperature distribution.

References

References
1.
Van Heddeghem
,
W.
,
Lambert
,
S.
,
Lannoo
,
B.
,
Colle
,
D.
,
Pickavet
,
M.
, and
Demeester
,
P.
,
2014
, “
Trends in Worldwide ICT Electricity Consumption From 2007 to 2012
,”
Comput. Commun.
,
50
(
l
), pp.
64
76
.
2.
Matt
,
S.
, and
Julian
,
K.
,
2013
, “
Uptime Institute 2012 Data Center Industry Survey
,” Uptime Institute, New York.
3.
Axiter
,
2014
,
Thermal Efficiency Best Practices
,
DCD Intelligence
,
Glenview, IL
.
4.
Emerson Network Power,
2009
, “
Energy Logic: Reducing Data Center Energy Consumption by Creating Savings That Cascade Across Systems
,” White Paper, Emerson Network Power, Vertiv Co., Columbus, OH, Technical Report.
5.
Cho
,
J.
,
Yang
,
J.
, and
Park
,
W.
,
2014
, “
Evaluation of Air Distribution System's Airflow Performance for Cooling Energy Savings in High-Density Data Centers
,”
Energy Build.
,
68
(
8i
), pp.
270
279
.
6.
Alkharabsheh
,
S.
,
Fernandes
,
J.
,
Gebrehiwot
,
B.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Ortega
,
A.
,
Joshi
,
Y.
, and
Sammakia
,
B.
,
2015
, “
A Brief Overview of Recent Developments in Thermal Management in Data Centers
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040801
.
7.
Tsuda
,
A.
,
Mino
,
Y.
, and
Nishimura
,
S.
,
2017
, “
Comparison of ICT Equipment Air-Intake Temperatures Between Cold Aisle Containment and Hot Aisle Containment in Datacenters
,”
International Telecommunications Energy Conference-INTELEC
,
Gold Coast, Australia
,
Oct. 22–26
, pp. 59–65.
8.
Jinkyun
,
C.
,
Taesub
,
L.
, and
Byungseon
,
S. K.
,
2009
, “
Measurements and Predictions of the Air Distribution Systems in High Compute Density (Internet) Data Centers
,”
Energy Build.
,
41
(
10
), pp.
1107
1115
.
9.
Gondipalli
,
S.
,
Sammakia
,
B.
,
Bhopte
,
S.
,
Schmidt
,
R.
,
Iyengar
,
M. K.
, and
Murray
,
B.
,
2009
, “
Optimization of Cold Aisle Isolation Designs for a Data Center With Roofs and Doors Using Slits
,”
ASME
Paper No. InterPACK2009-89203.
10.
Arghode
,
V. K.
,
Sundaralingam
,
V.
,
Joshi
,
Y.
, and
Phelps
,
W.
,
2013
, “
Thermal Characteristics of Open and Contained Data Center Cold Aisle
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061901
.
11.
Schmidt
,
R.
,
Vallury
,
A.
, and
Iyengar
,
M.
,
2011
, “
Energy Savings Through Hot and Cold Aisle Containment Configurations for Air Cooled Servers in Data Centers
,”
ASME
Paper No. IPACK2011-52206.
12.
Ham
,
S.-W.
, and
Jeong
,
J.-W.
,
2016
, “
Impact of Aisle Containment on Energy Performance of a Data Center When Using an Integrated Water-Side Economizer
,”
Appl. Therm. Eng.
,
105
(
5
), pp.
372
384
.
13.
Wang
,
C. H.
,
Tsui
,
Y. Y.
, and
Wang
,
C. C.
,
2017
, “
On Cold-Aisle Containment of a Container Datacenter
,”
Appl. Therm. Eng.
,
112
(
12
), pp.
133
142
.
14.
Wang
,
C. H.
,
Tsui
,
Y. Y.
, and
Wang
,
C. C.
,
2017
, “
Airflow Management on the Efficiency Index of a Container Data Center Having Overhead Air Supply
,”
ASME J. Electron. Packag.
,
139
(
4
), p.
041008
.
15.
Tatchell-Evans
,
M.
,
Kapur
,
N.
,
Summers
,
J.
,
Thompson
,
H.
, and
Oldham
,
D.
,
2017
, “
An Experimental and Theoretical Investigation of the Extent of Bypass Air Within Data Centres Employing Aisle Containment, and Its Impact on Power Consumption
,”
Appl. Energy
,
186
(
86
), pp.
457
469
.
16.
Alkharabsheh
,
S. A.
,
Sammakia
,
B. G.
, and
Shrivastava
,
S. K.
,
2015
, “
Experimentally Validated Computational Fluid Dynamics Model for a Data Center With Cold Aisle Containment
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021010
.
17.
Nemati
,
K.
,
Alissa
,
H.
, and
Sammakia
,
B.
, “
Performance of Temperature Controlled Perimeter and Row-Based Cooling Systems in Open and Containment Environment
,”
ASME
Paper No. IMECE2015-52667.
18.
Tradat
,
M.
,
Khalili
,
S.
,
Sammakia
,
B.
,
Ibrahim
,
M.
,
Peddle
,
T.
,
Calder
,
A.
,
Dawson
,
B.
,
Seymour
,
M.
,
Nemati
,
K.
, and
Alissa
,
H.
, “
Comparison and Evaluation of Different Monitoring Methods in a Data Center Environment
,”
ASME
Paper No. IPACK2017-74105.
19.
Khalili
,
S.
,
Tradat
,
M. I.
,
Nemati
,
K.
,
Seymour
,
M.
, and
Sammakia
,
B.
,
2018
, “
Impact of Tile Design on the Thermal Performance of Open and Enclosed Aisles
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010907
.
20.
Arghode
,
V. K.
, and
Joshi
,
Y.
,
2015
, “
Measurement of Air Flow Rate Sensitivity to the Differential Pressure Across a Server Rack in a Data Center
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
041002
.
21.
ASHRAE
,
2011
, “
ASHRAE TC9.9 Data Center Power Equipment Thermal Guidelines and Best Practices
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.
22.
ASHRAE
,
2011
, “
Thermal Guidelines for Data Processing Environments—Expanded Data Center Classes and Usage Guidance
,” Ashrae Tc9.9 2011, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.
23.
Nemati
,
K.
,
Alissa
,
H. A.
,
Murray
,
B. T.
,
Sammakia
,
B. G.
,
Tipton
,
R.
, and
Seymour
,
M. J.
,
2017
, “
Comprehensive Experimental and Computational Analysis of a Fully Contained Hybrid Server Cabinet
,”
ASME J. Heat Transfer
,
139
(
8
), p.
082101
.
24.
Granger
,
R. A.
,
1995
, “
Laminar Pipe Flow
,”
Fluid Mech
,
Dover Publications
,
New York
.
25.
Tianyu
,
L.
, and
Zengji
,
C.
,
2004
,
Hydrodynamics
,
China Architecture and Building Press
,
Beijing
.
26.
Demetriou
,
D. W.
, and
Khalifa
,
H. E.
,
2013
, “
Thermally Aware, Energy-Based Load Placement in Open-Aisle, Air-Cooled Data Centers
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030906
.
27.
ASHRAE
.
2010
, “
ASHRAE Guideline 2-2010 Engineering Analysis of Experimental Data
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.
You do not currently have access to this content.