With recent advances in the state-of-the-art of power electronic devices, packaging has become one of the critical factors limiting the performance and durability of power electronics. To this end, this study investigates the feasibility of a novel integrated package assembly, which consists of copper circuit layer on an aluminum nitride (AlN) dielectric layer that is bonded to an aluminum silicon carbide (AlSiC) substrate. The entire assembly possesses a low coefficient of thermal expansion (CTE) mismatch which aids in the thermal cycling reliability of the structure. The new assembly can serve as a replacement for the conventionally used direct bonded copper (DBC)—Cu base plate—Al heat sink assembly. While improvements in thermal cycling stability of more than a factor of 18 has been demonstrated, the use of AlSiC can result in increased thermal resistance when compared to thick copper heat spreaders. To address this issue, we demonstrate that the integration of single-phase liquid cooling in the AlSiC layer can result in improved thermal performance, matching that of copper heat spreading layers. This is aided by the use of heat transfer enhancement features built into the AlSiC layer. It is found that, for a given pumping power and through analytical optimization of geometries, microchannels, pin fins, and jets can be designed to yield a heat transfer coefficients (HTCs) of up to 65,000 W m−2 K−1, which can result in competitive device temperatures as Cu-baseplate designs, but with added reliability.

References

References
1.
Blaabjerg
,
F.
,
Chen
,
Z.
, and
Kjaer
,
S. B.
,
2004
, “
Power Electronics as Efficient Interface in Dispersed Power Generation Systems
,”
IEEE Trans. Power Electron.
,
19
(
5
), pp.
1184
1194
.
2.
Chen
,
Z.
,
Guerrero
,
J. M.
, and
Blaabjerg
,
F.
,
2009
, “
A Review of the State of the Art of Power Electronics for Wind Turbines
,”
IEEE Trans. Power Electron.
,
24
(
8
), pp.
1859
1875
.
3.
Emadi
,
A.
,
Williamson
,
S. S.
, and
Khaligh
,
A.
,
2006
, “
Power Electronics Intensive Solutions for Advanced Electric, Hybrid Electric, and Fuel Cell Vehicular Power Systems
,”
IEEE Trans. Power Electron.
,
21
(
3
), pp.
567
577
.
4.
Narumanchi
,
S.
,
DeVoto
,
D.
,
Mihalic
,
M.
, and
Paret
,
P.
, 2013, “
Performance and Reliability of Interface Materials for Automotive Power Electronics, Presentation
,” July 1, University of North Texas, Golden, CO, accessed Apr. 11, 2019, https://digital.library.unt.edu/ark:/67531/metadc841383/
5.
Mitic
,
G.
,
Beinert
,
R.
,
Klofac
,
P.
,
Schultz
,
H. J.
, and
Lefranc
,
G.
,
1999
, “
Reliability of AlN Substrates and Their Solder Joints in IGBT Power Modules
,”
Microelectron. Reliab.
,
39
(
6–7
), pp.
1159
1164
.
6.
DeVoto
,
D.
,
Paret
,
P.
,
Narumanchi
,
S.
, and
Mihalic
,
M.
,
2013
, “
Reliability of Bonded Interfaces for Automotive Power Electronics
,”
ASME
Paper No. IPACK2013-73143.
7.
Pahinkar Darshan
,
G.
,
Puckett
,
W.
,
Graham
,
S.
,
Boteler
,
L.
,
Ibitayo
,
D.
,
Narumanchi
,
S.
,
Paret
,
P.
,
DeVoto
,
D.
, and
Major
,
J.
,
2018
, “
Transient Liquid Phase Bonding of AlN to AlSiC for Durable Power Electronic Packages
,”
Adv. Eng. Mater.
,
20
(
18
), p.
1800039
.
8.
Wilson
,
J.
,
2007
, “
Thermal Conductivity of Common Alloys in Electronics Packaging
,” Electronics Cooling, accessed Apr. 11, 2019, https://www.electronics-cooling.com/2007/02/thermal-conductivity-of-common-alloys-in-electronics-packaging/
9.
Wei
,
R.
,
Song
,
S.
,
Yang
,
K.
,
Cui
,
Y.
,
Peng
,
Y.
,
Chen
,
X.
,
Hu
,
X.
, and
Xu
,
X.
,
2013
, “
Thermal Conductivity of 4H-SiC Single Crystals
,”
J. Appl. Phys.
,
113
(
5
), p.
053503
.
10.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
11.
Siewert
,
T.
,
Liu
,
S.
,
Smith
,
D. R.
, and
Madeni
,
J. C.
,
2002
, “
Database for Solder Properties With Emphasis on New Lead-Free Solders
,” Properties of Lead-Free Solders Release 4.0, National Institute of Standards and Technology, Gaithersburg, MD.
12.
Zhou
,
F.
,
Dede
,
E. M.
, and
Joshi
,
S. N.
, 2015, “
A Novel Design of Hybrid Slot Jet and Mini-Channel Cold Plate for Electronics Cooling
,”
31st Thermal Measurement, Modeling & Management Symposium
(
SEMI-THERM
),
San Jose, CA
,
Mar. 15–19
, pp.
60
67
.
13.
Lau
,
B. L.
,
Han
,
Y.
,
Yue
,
G.
,
Lu
,
Z.
, and
Xiaowu
,
Z.
,
2015
, “
Fabrication of Package Level Silicon Micro-Cooler for Electronics Cooling
,”
IEEE 17th Electronics Packaging and Technology Conference
(
EPTC
),
Singapore
,
Dec. 2–4
, pp.
1
7
.
14.
Sakanova
,
A.
, and
Yin
,
S.
,
2013
, “
Comparative Investigation of Double-Layer and Double-Side Micro-Channel Cooling for Power Electronics Packaging
,”
IEEE 15th Electronics Packaging Technology Conference
(
EPTC
),
Singapore
,
Dec. 11–13
, pp.
73
77
.
15.
Pautsch
,
A. G.
,
Gowda
,
A.
,
Stevanovic
,
L.
, and
Beaupre
,
R.
,
2009
, “
Double-Sided Microchannel Cooling of a Power Electronics Module Using Power Overlay
,”
ASME
Paper No. InterPACK2009-89190.
16.
Maddox
,
J. F.
,
Knight
,
R. W.
, and
Bhavnani
,
S. H.
,
2014
, “
Local Thermal Measurements of a Confined Array of Impinging Liquid Jets for Power Electronics Cooling
,”
31st Thermal Measurement, Modeling & Management Symposium
(
SEMI-THERM
),
San Jose, CA
,
Mar. 15–19
, pp.
228
234
.
17.
Gess
,
J. L.
,
Bhavnani
,
S. H.
, and
Johnson
,
R. W.
,
2015
, “
Experimental Investigation of a Direct Liquid Immersion Cooled Prototype for High Performance Electronic Systems
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
10
), pp.
1451
1464
.
18.
Turgut
,
A.
, and
Elbasan
,
E.
,
2014
, “
Nanofluids for Electronics Cooling
,”
IEEE 20th International Symposium for Design and Technology in Electronic Packaging
(
SIITME
),
Bucharest, Romania
,
Oct. 23–26
, pp.
35
37
.
19.
Malu
,
N.
,
Bora
,
D.
,
Nakanekar
,
S.
, and
Tonapi
,
S.
,
2014
, “
Thermal Management of an IGBT Module Using Two-Phase Cooling
,”
14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Orlando, FL
,
May 27–30
, pp.
1079
1085
.
20.
CERN,
2011
, “
Properties of Mixture Water/Glycol
,” The European Organization for Nuclear Research (CERN), Meyrin, Switzerland, accessed Apr. 11, 2019, http://detector-cooling.web.cern.ch/Detector-Cooling/data/Table%208-3-1.htm
21.
Churchill
,
S. W.
,
1977
, “
Comprehensive Correlating Equations for Heat, Mass and Momentum Transfer in Fully Developed Flow in Smooth Tubes
,”
Ind. Eng. Chem. Fund.
,
16
(
1
), pp.
109
116
.
22.
Churchill
,
S. W.
,
1977
, “
Friction-Factor Equations Spans All Fluid Flow Regimes
,”
Chem. Eng. J.
,
84
, pp.
91
92
.https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1764207
23.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2006
,
Fundamentals of Fluid Mechanics
,
Wiley & Sons
,
Hoboken, NJ
.
24.
Zukauskas
,
A.
, and
Ulinskas
,
R.
,
1988
,
Heat Transfer in Banks of Tubes in Crossflow, Hemisphere Publishing Corporation
, Chicago, IL.
You do not currently have access to this content.