Abstract

Ultraviolet light-emitting diodes (UV-LEDs) have drawn considerable attention in environment, life science, and industry fields, such as the applications of near UV-LEDs in resin curing, illumination, and identification, and deep UV-LEDs in disinfection, medical treatment, and biochemical inspection. However, due to the limitation of packaging technology, UV-LED devices exhibit low light efficiency and poor reliability compared with visible LEDs. The organic encapsulation materials are prone to UV aging, thermal degradation, and nonairtightness, which significantly reduce the performances of UV-LEDs. In order to solve this issue, UV-LED packaging technology has been proposed for UV-LED devices instead of conventional LED packaging. In this review, we investigated in detail the overview and challenges of near-ultraviolet light-emitting diodes (NUV-LED)/deep-ultraviolet light-emitting diodes (DUV-LED) packaging. For the packaging of UV-LEDs, all inorganic encapsulation materials, hermetic packaging structures with low-temperature bonding, reduced reflection losses, UV stable and transparent materials, and effective thermal management are key progresses to enhance the light efficiency and reliability of UV-LEDs. In addition, the summary and perspectives of NUV-LED/DUV-LED packaging were introduced and discussed.

References

1.
Taniyasu
,
Y.
,
Kasu
,
M.
, and
Makimoto
,
T.
,
2006
, “
An Aluminium Nitride Light-Emitting Diode With a Wavelength of 210 Nanometres
,”
Nature
,
441
(
7091
), pp.
325
328
.10.1038/nature04760
2.
Shur
,
M. S.
, and
Gaska
,
R.
,
2010
, “
Deep-Ultraviolet Light-Emitting Diodes
,”
IEEE Trans. Electron Devices
,
57
(
1
), pp.
12
25
.10.1109/TED.2009.2033768
3.
Hu
,
X.
,
Deng
,
J.
,
Zhang
,
J.
,
Lunev
,
A.
,
Bilenko
,
Y.
,
Katona
,
T.
,
Shur
,
M.
,
Gaska
,
R.
,
Shatalov
,
M.
, and
Khan
,
A.
,
2006
, “
Deep Ultraviolet Light-Emitting Diodes
,”
Phys. Status Solidi (a)
,
203
(
7
), pp.
1815
1818
.10.1002/pssa.200565266
4.
Shatalov
,
M.
,
Sun
,
W.
,
Lunev
,
A.
,
Hu
,
X.
,
Dobrinsky
,
A.
,
Bilenko
,
Y.
,
Yang
,
J.
,
Shur
,
M.
,
Gaska
,
R.
,
Moe
,
C.
,
Garrett
,
G.
, and
Wraback
,
M.
,
2012
, “
AlGaN Deep-Ultraviolet Light-Emitting Diodes With External Quantum Efficiency Above 10%
,”
Appl. Phys. Exp.
,
5
(
8
), p.
082101
.10.1143/APEX.5.082101
5.
Khan
,
A.
,
Balakrishnan
,
K.
, and
Katona
,
T.
,
2008
, “
Ultraviolet Light-Emitting Diodes Based on Group Three Nitrides
,”
Nat. Photonics
,
2
(
2
), pp.
77
84
.10.1038/nphoton.2007.293
6.
Kneissl
,
M.
,
Kolbe
,
T.
,
Chua
,
C.
,
Kueller
,
V.
,
Lobo
,
N.
,
Stellmach
,
J.
,
Knauer
,
A.
,
Rodriguez
,
H.
,
Einfeldt
,
S.
,
Yang
,
Z.
,
Johnson
,
N. M.
, and
Weyers
,
M.
,
2011
, “
Advances in Group III-Nitride-Based Deep UV Light-Emitting Diode Technology
,”
Semicond. Sci. Technol.
,
26
(
1
), p.
014036
.10.1088/0268-1242/26/1/014036
7.
Muramoto
,
Y.
,
Kimura
,
M.
, and
Nouda
,
S.
,
2014
, “
Development and Future of Ultraviolet Light-Emitting Diodes: UV-LED Will Replace the UV Lamp
,”
Semicond. Sci. Technol.
,
29
(
8
), p.
084004
.10.1088/0268-1242/29/8/084004
8.
Hirayama
,
H.
,
Maeda
,
N.
,
Fujikawa
,
S.
,
Toyoda
,
S.
, and
Kamata
,
N.
,
2014
, “
Recent Progress and Future Prospects of AlGaN-Based High-Efficiency Deep-Ultraviolet Light-Emitting Diodes
,”
Jpn. J. Appl. Phys.
,
53
(
10
), p.
100209
.10.7567/JJAP.53.100209
9.
Fujioka
,
A.
,
Asada
,
K.
,
Yamada
,
H.
,
Ohtsuka
,
T.
,
Ogawa
,
T.
,
Kosugi
,
T.
,
Kishikawa
,
D.
, and
Mukai
,
T.
,
2014
, “
High-Output-Power 255/280/310 Nm Deep Ultraviolet Light-Emitting Diodes and Their Lifetime Characteristics
,”
Semicond. Sci. Technol.
,
29
(
8
), p.
084005
.10.1088/0268-1242/29/8/084005
10.
Gao
,
N.
,
Huang
,
K.
,
Li
,
J.
,
Li
,
S.
,
Yang
,
X.
, and
Kang
,
J.
,
2012
, “
Surface-Plasmon-Enhanced Deep-UV Light Emitting Diodes Based on AlGaN Multi-Quantum Wells
,”
Sci. Rep.
,
2
, p.
816
.10.1038/srep00816
11.
Jo
,
M.
,
Maeda
,
N.
, and
Hirayama
,
H.
,
2016
, “
Enhanced Light Extraction in 260 nm Light-Emitting Diode With a Highly Transparent p-AlGaN Layer
,”
Appl. Phys. Exp.
,
9
(
1
), p.
012102
.10.7567/APEX.9.012102
12.
Ryu
,
H.-Y.
,
Choi
,
I.-G.
,
Choi
,
H.-S.
, and
Shim
,
J.-I.
,
2013
, “
Investigation of Light Extraction Efficiency in AlGaN Deep-Ultraviolet Light-Emitting Diodes
,”
Appl. Phys. Exp.
,
6
(
6
), p.
062101
.10.7567/APEX.6.062101
13.
Asif Khan
,
M.
,
2006
, “
AlGaN Multiple Quantum Well Based Deep UV LEDs and Their Applications
,”
Phys. Status Solidi (a)
,
203
(
7
), pp.
1764
1770
.10.1002/pssa.200565427
14.
Shatalov
,
M.
,
Lunev
,
A.
,
Hu
,
X.
,
Bilenko
,
O.
,
Gaska
,
I.
,
Sun
,
W.
,
Yang
,
J.
,
Dobrinsky
,
A.
,
Bilenko
,
Y.
, and
Gaska
,
R.
,
2013
, “
Performance and Applications of Deep UV LED
,”
Front. Electron.
,
53
, pp.
93
107
.10.1142/STES
15.
Mukish
,
P.
, and
Boulay
,
P.
,
2016
,
UV LEDs-Technology, Manufacturing and Application Trends
,
Yole Développement
,
Lyon, France
.
16.
Ho
,
C.-H.
,
Hsiao
,
Y.-H.
,
Lien
,
D.-H.
,
Tsai
,
M.
,
Chang
,
D.
,
Lai
,
K.-Y.
,
Sun
,
C.-C.
, and
He
,
J.-H.
,
2013
, “
Enhanced Light-Extraction From Hierarchical Surfaces Consisting of p-GaN Microdomes and SiO2 Nanorods for GaN-Based Light-Emitting Diodes
,”
Appl. Phys. Lett.
,
103
(
16
), p.
161104
.10.1063/1.4824848
17.
Inoue
,
S.-I.
,
Naoki
,
T.
,
Kinoshita
,
T.
,
Obata
,
T.
, and
Yanagi
,
H.
,
2015
, “
Light Extraction Enhancement of 265 nm Deep-Ultraviolet Light-Emitting Diodes With Over 90 mW Output Power Via an AlN Hybrid Nanostructure
,”
Appl. Phys. Lett.
,
106
(
13
), p.
131104
.10.1063/1.4915255
18.
Inoue
,
S.-I.
,
Tamari
,
N.
, and
Taniguchi
,
M.
,
2017
, “
150 mW Deep-Ultraviolet Light-Emitting Diodes With Large-Area AlN Nanophotonic Light-Extraction Structure Emitting at 265 nm
,”
Appl. Phys. Lett.
,
110
(
14
), p.
141106
.10.1063/1.4978855
19.
Takano
,
T.
,
Mino
,
T.
,
Sakai
,
J.
,
Noguchi
,
N.
,
Tsubaki
,
K.
, and
Hirayama
,
H.
,
2017
, “
Deep-Ultraviolet Light-Emitting Diodes With External Quantum Efficiency Higher Than 20% at 275 nm Achieved by Improving Light-Extraction Efficiency
,”
Appl. Phys. Exp.
,
10
(
3
), p.
031002
.10.7567/APEX.10.031002
20.
Lee
,
T. H.
,
Lee
,
B. R.
,
Son
,
K. R.
,
Shin
,
H. W.
, and
Kim
,
T. G.
,
2017
, “
Highly Efficient Deep-UV Light-Emitting Diodes Using AlN-Based Deep-UV-Transparent Glass Electrodes
,”
ACS Appl. Mater. Interfaces
,
9
(
50
), pp.
43774
43781
.10.1021/acsami.7b13624
21.
Luo
,
X.
,
Hu
,
R.
,
Liu
,
S.
, and
Wang
,
K.
,
2016
, “
Heat and Fluid Flow in High-Power LED Packaging and Applications
,”
Prog. Energy Combust. Sci.
,
56
, pp.
1
32
.10.1016/j.pecs.2016.05.003
22.
Lin
,
Y.-H.
,
You
,
J. P.
,
Lin
,
Y.-C.
,
Tran
,
N. T.
, and
Shi
,
F. G.
,
2010
, “
Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
4
), pp.
761
766
.10.1109/TCAPT.2010.2046488
23.
Huang
,
S.-Y.
, and
Wang
,
J.-S.
,
2017
, “
Thermally Stable Conformal Encapsulation Material for High-Power Ultraviolet Light-Emitting Diodes
,”
Opt. Eng.
,
56
(
7
), p.
077105
.10.1117/1.OE.56.7.077105
24.
Luo
,
X.
,
Fu
,
X.
,
Chen
,
F.
, and
Zheng
,
H.
,
2013
, “
Phosphor Self-Heating in Phosphor Converted Light Emitting Diode Packaging
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
276
281
.10.1016/j.ijheatmasstransfer.2012.11.056
25.
Peng
,
Y.
,
Li
,
R.
,
Wang
,
S.
,
Chen
,
Z.
,
Nie
,
L.
, and
Chen
,
M.
,
2017
, “
Luminous Properties and Thermal Reliability of Screen-Printed Phosphor-in-Glass-Based White Light-Emitting Diodes
,”
IEEE Trans. Electron Devices
,
64
(
3
), pp.
1114
1119
.10.1109/TED.2016.2645285
26.
Peng
,
Y.
,
Li
,
R.
,
Cheng
,
H.
,
Chen
,
Z.
,
Li
,
H.
, and
Chen
,
M.
,
2017
, “
Facile Preparation of Patterned Phosphor-in-Glass With Excellent Luminous Properties Through Screen-Printing for High-Power White Light-Emitting Diodes
,”
J. Alloys Compd.
,
693
, pp.
279
284
.10.1016/j.jallcom.2016.09.197
27.
Peng
,
Y.
,
Mou
,
Y.
,
Sun
,
Q.
,
Cheng
,
H.
,
Chen
,
M.
, and
Luo
,
X.
,
2019
, “
Facile Fabrication of Heat-Conducting Phosphor-in-Glass With Dual-Sapphire Plates for Laser-Driven White Lighting
,”
J. Alloys Compd.
,
790
, pp.
744
749
.10.1016/j.jallcom.2019.03.220
28.
Peng
,
Y.
,
Mou
,
Y.
,
Zhuo
,
Y.
,
Li
,
H.
,
Wang
,
X.
,
Chen
,
M.
, and
Luo
,
X.
,
2018
, “
Preparation and Luminescent Performances of Thermally Stable Red-Emitting Phosphor-In-Glass for High-Power Lighting
,”
J. Alloys Compd.
,
768
, pp.
114
121
.10.1016/j.jallcom.2018.07.052
29.
Peng
,
Y.
,
Mou
,
Y.
,
Wang
,
H.
,
Zhuo
,
Y.
,
Li
,
H.
,
Chen
,
M.
, and
Luo
,
X.
,
2018
, “
Stable and Efficient All-Inorganic Color Converter Based on Phosphor in Tellurite Glass for Next-Generation Laser-Excited White Lighting
,”
J. Eur. Ceram. Soc.
,
38
(
16
), pp.
5525
5532
.10.1016/j.jeurceramsoc.2018.08.014
30.
Zhang
,
R.
,
Lin
,
H.
,
Yu
,
Y.
,
Chen
,
D.
,
Xu
,
J.
, and
Wang
,
Y.
,
2014
, “
A New-Generation Color Converter for High-Power White Led: Transparent Ce3+:YAG Phosphor-in-Glass
,”
Laser Photonics Rev.
,
8
(
1
), pp.
158
164
.10.1002/lpor.201300140
31.
Liu
,
S.
, and
Luo
,
X.
,
2011
,
LED Packaging for Lighting Applications: Design, Manufacturing, and Testing
,
Wiley
,
New York
.
32.
Hu
,
R.
,
Zhou
,
S.
,
Li
,
Y.
,
Lei
,
D. Y.
,
Luo
,
X.
, and
Qiu
,
C. W.
,
2018
, “
Illusion Thermotics
,”
Adv. Mater.
,
30
(
22
), p.
1707237
.10.1002/adma.201707237
33.
Ma
,
Y.
,
Lan
,
W.
,
Xie
,
B.
,
Hu
,
R.
, and
Luo
,
X.
,
2018
, “
An Optical-Thermal Model for Laser-Excited Remote Phosphor With Thermal Quenching
,”
Int. J. Heat Mass Transfer
,
116
, pp.
694
702
.10.1016/j.ijheatmasstransfer.2017.09.066
34.
Peng
,
Y.
,
Mou
,
Y.
,
Guo
,
X.
,
Xu
,
X.
,
Li
,
H.
,
Chen
,
M.
, and
Luo
,
X.
,
2018
, “
Flexible Fabrication of a Patterned Red Phosphor Layer on a YAG:Ce3+ Phosphor-in-Glass for High-Power WLEDs
,”
Opt. Mater. Exp.
,
8
(
3
), pp.
605
614
.10.1364/OME.8.000605
35.
Huang
,
J. C.
,
Chu
,
Y. P.
,
Wei
,
M.
, and
Deanin
,
R. D.
,
2004
, “
Comparison of Epoxy Resins for Applications in Light-Emitting Diodes
,”
Adv. Polym. Technol.: J. Polym. Process. Inst.
,
23
(
4
), pp.
298
306
.10.1002/adv.20018
36.
Huang
,
W.
,
Zhang
,
Y.
,
Yu
,
Y.
, and
Yuan
,
Y.
,
2007
, “
Studies on UV-Stable Silicone-Epoxy Resins
,”
J. Appl. Polym. Sci.
,
104
(
6
), pp.
3954
3959
.10.1002/app.26188
37.
Mou
,
Y.
,
Cheng
,
H.
,
Wang
,
H.
,
Sun
,
Q.
,
Liu
,
J.
,
Peng
,
Y.
, and
Chen
,
M.
,
2019
, “
Facile Preparation of Stable Reactive Silver Ink for Highly Conductive and Flexible Electrodes
,”
Appl. Surf. Sci.
,
475
, pp.
75
82
.10.1016/j.apsusc.2018.12.261
38.
Costa
,
F.
,
Fregonese
,
D.
,
Agnello
,
S.
, and
Cannas
,
M.
,
2011
, “
Stability of Sol-Gel Silica Glass for CPV and Ultraviolet LED Applications
,”
Glass Technol.-Eur. J. Glass Sci. Technol. Part A
,
52
(
6
), pp.
185
189
.
39.
Fan
,
Z.
,
Jiang
,
H.
, and
Lin
,
J.
,
2006
, “
Encapsulation and Packaging of Ultraviolet and Deep-Ultraviolet Light Emitting Diodes
,” U.S. Patent No. 20060138443A1.
40.
Hirano
,
A.
,
Nagasawa
,
Y.
,
Ippommatsu
,
M.
,
Aosaki
,
K.
,
Honda
,
Y.
,
Amano
,
H.
, and
Akasaki
,
I.
,
2016
, “
Development of AlGaN-Based Deep-Ultraviolet (DUV) LEDs Focusing on the Fluorine Resin Encapsulation and the Prospect of the Practical Applications
,”
Proc. SPIE
,
9926
, p.
99260C
.
41.
Lu
,
C.-C.
,
Wang
,
C.-P.
,
Liu
,
C.-Y.
, and
Hsu
,
C.-P.
,
2016
, “
The Efficiency and Reliability Improvement by Utilizing Quartz Airtight Packaging of UVC LEDs
,”
IEEE Trans. Electron Devices
,
63
(
8
), pp.
3143
3146
.10.1109/TED.2016.2580707
42.
Jourdain
,
A.
,
De Moor
,
P.
,
Baert
,
K.
,
De Wolf
,
I.
, and
Tilmans
,
H.
,
2005
, “
Mechanical and Electrical Characterization of BCB as a Bond and Seal Material for Cavities Housing (RF-) MEMS Devices
,”
J. Micromech. Microeng.
,
15
(
7
), p.
S89
.10.1088/0960-1317/15/7/013
43.
Chen
,
Z.
,
Peng
,
Y.
,
Cheng
,
H.
,
Yang
,
Z.
, and
Chen
,
M.
,
2017
, “
Void-Free and High-Speed Filling of Through Ceramic Holes by Copper Electroplating
,”
Microelectron. Reliab.
,
75
, pp.
171
177
.10.1016/j.microrel.2017.06.074
44.
Chen
,
M.
,
Yuan
,
L.
, and
Liu
,
S.
,
2007
, “
Research on Low-Temperature Anodic Bonding Using Induction Heating
,”
Sens. Actuators A: Phys.
,
133
(
1
), pp.
266
269
.10.1016/j.sna.2006.03.011
45.
Sosnowchik
,
B. D.
,
Azevedo
,
R. G.
,
Myers
,
D. R.
,
Chan
,
M. W.
,
Pisano
,
A. P.
, and
Lin
,
L.
,
2012
, “
Rapid Silicon-to-Steel Bonding by Induction Heating for MEMS Strain Sensors
,”
J. Microelectromech. Syst.
,
21
(
2
), pp.
497
506
.10.1109/JMEMS.2011.2179013
46.
Liang
,
R.
,
Wu
,
F.
,
Wang
,
S.
,
Chen
,
Q.
,
Dai
,
J.
, and
Chen
,
C.
,
2017
, “
Enhanced Optical and Thermal Performance of Eutectic Flip-Chip Ultraviolet Light-Emitting Diodes Via AlN-Doped-Silicone Encapsulant
,”
IEEE Trans. Electron Devices
,
64
(
2
), pp.
467
471
.10.1109/TED.2016.2637445
47.
Li
,
X.-H.
,
Song
,
R.
,
Ee
,
Y.-K.
,
Kumnorkaew
,
P.
,
Gilchrist
,
J. F.
, and
Tansu
,
N.
,
2011
, “
Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes With Colloidal Microlens Arrays With Various Aspect Ratios
,”
IEEE Photonics J.
,
3
(
3
), pp.
489
499
.
48.
Sun
,
Y.
, and
Forrest
,
S. R.
,
2006
, “
Organic Light Emitting Devices With Enhanced Outcoupling Via Microlenses Fabricated by Imprint Lithography
,”
J. Appl. Phys.
,
100
(
7
), p.
073106
.10.1063/1.2356904
49.
Chu
,
J.
,
Lei
,
X.
,
Wu
,
J.
,
Peng
,
Y.
,
Liu
,
S.
,
Yang
,
Q.
, and
Zheng
,
H.
,
2017
, “
Enhanced Light Extraction Efficiency of Chip-on Board Light-Emitting Diodes Through Micro-Lens Array Fabricated by Ion Wind
,”
Opt. Laser Technol.
,
89
, pp.
92
96
.10.1016/j.optlastec.2016.09.045
50.
Liu
,
C.-M.
, and
Su
,
G.-D. J.
,
2016
, “
Enhanced Light Extraction From UV LEDs Using Spin-on Glass Microlenses
,”
J. Micromech. Microengin.
,
26
(
5
), p.
055003
.10.1088/0960-1317/26/5/055003
51.
Ploch
,
N. L.
,
Rodriguez
,
H.
,
Stolmacker
,
C.
,
Hoppe
,
M.
,
Lapeyrade
,
M.
,
Stellmach
,
J.
,
Mehnke
,
F.
,
Wernicke
,
T.
,
Knauer
,
A.
, and
Kueller
,
V.
,
2013
, “
Effective Thermal Management in Ultraviolet Light-Emitting Diodes With Micro-LED Arrays
,”
IEEE Trans. Electron Devices
,
60
(
2
), pp.
782
786
.10.1109/TED.2012.2234462
52.
Qin
,
Y.
,
Lin
,
D.
, and
Hui
,
S.
,
2009
, “
A Simple Method for Comparative Study on the Thermal Performance of LEDs and Fluorescent Lamps
,”
IEEE Trans. Power Electron.
,
24
(
7
), pp.
1811
1818
.
53.
Li
,
X.
,
Chen
,
X.
, and
Lu
,
G.-Q.
,
2010
, “
Reliability of High-Power Light Emitting Diode Attached With Different Thermal Interface Materials
,”
ASME J. Electron. Packag.
,
132
(
3
), p.
031011
.10.1115/1.4002299
54.
Yang
,
C.
,
Wang
,
C.
, and
Hang
,
C.
,
2010
, “
Water Cooling Design for High-Power LED Multi-Chip Module
,”
Electron Process Technol.
,
31
(
5
), pp.
253
257
.
55.
Liang
,
R.
,
Zhang
,
J.
,
Wang
,
S.
,
Ding
,
T.
,
Dai
,
J.
, and
Chen
,
C.
,
2016
, “
Experimental Study on the Effects of Eutectic Voids on the Thermal Performance Within Flip-Chip Ultraviolet Light-Emitting Diodes
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
10
), pp.
1488
1492
.10.1109/TCPMT.2016.2604019
56.
Wang
,
C.-P.
,
Ying
,
S.-P.
,
Su
,
Y.-C.
, and
Chang
,
T.-L.
,
2015
, “
Thermal Analysis of Eutectic Flip-Chip Light-Emitting Diodes Fabricated Using Copper-Coated Ceramic Substrate
,”
IEEE Trans. Electron Devices
,
62
(
8
), pp.
2524
2527
.10.1109/TED.2015.2443136
57.
Wang
,
C.-P.
,
2016
, “
Effects of Diode Voltage and Thermal Resistance on the Performance of Multichip LED Modules
,”
IEEE Trans. Electron Devices
,
63
(
1
), pp.
390
393
.10.1109/TED.2015.2496723
58.
Liang
,
R.
,
Dai
,
J.
,
Ye
,
L.
,
Xu
,
L.
,
Peng
,
Y.
,
Wang
,
S.
,
Chen
,
J.
,
Long
,
H.
, and
Chen
,
C.
,
2017
, “
Improvement of Interface Thermal Resistance for Surface-Mounted Ultraviolet Light-Emitting Diodes Using a Graphene Oxide Silicone Composite
,”
ACS Omega
,
2
(
8
), pp.
5005
5011
.10.1021/acsomega.7b00918
59.
Werdecker
,
W.
, and
Aldinger
,
F.
,
1984
, “
Aluminum Nitride-an Alternative Ceramic Substrate for High Power Applications in Microcircuits
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
7
(
4
), pp.
399
404
.10.1109/TCHMT.1984.1136380
60.
Khoong
,
L.
,
Tan
,
Y.
, and
Lam
,
Y.
,
2010
, “
Overview on Fabrication of Three-Dimensional Structures in Multi-Layer Ceramic Substrate
,”
J. Eur. Ceram. Soc.
,
30
(
10
), pp.
1973
1987
.10.1016/j.jeurceramsoc.2010.03.011
61.
Ru
,
H.
,
Wei
,
V.
,
Jiang
,
T.
, and
Chiu
,
M.
,
2011
, “
Direct Plated Copper Technology for High Brightness LED Packaging
,”
Sixth International Microsystems, Packaging, Assembly, and Circuits Technology Conference (IMPACT)
,
Taipei, Taiwan
,
Oct. 19–21
, pp.
311
314
.
62.
Cheng
,
H.
,
Peng
,
Y.
,
Mou
,
Y.
,
Sun
,
Q.
, and
Chen
,
M.
,
2019
, “
Low-Temperature Fabrication of 3D Ceramic Substrate by Molding Inorganic Aluminosilicate Paste
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
041003
.10.1115/1.4043645
63.
Sun
,
Q.
,
Peng
,
Y.
,
Cheng
,
H.
,
Mou
,
Y.
,
Yang
,
Z.
,
Liang
,
D.
, and
Chen
,
M.
,
2019
, “
Direct Ink Writing of 3D Cavities for Direct Plated Copper Ceramic Substrates With Kaolin Suspensions
,”
Ceram. Int.
,
45
(
9
), pp.
12535
12543
.10.1016/j.ceramint.2019.03.191
64.
Sun
,
Q.
,
Liu
,
J.
,
Cheng
,
H.
,
Mou
,
Y.
,
Liu
,
J.
,
Peng
,
Y.
, and
Chen
,
M.
,
2019
, “
Fabrication of 3D Structures Via Direct Ink Writing of Kaolin/Graphene Oxide Composite Suspensions at Ambient Temperature
,”
Ceram. Int.
,
45
(
15
), pp.
18972
18979
.10.1016/j.ceramint.2019.06.136
65.
Sun
,
Q.
,
Yang
,
Z.
,
Cheng
,
H.
,
Peng
,
Y.
,
Huang
,
Y.
, and
Chen
,
M.
,
2018
, “
Creation of Three-Dimensional Structures by Direct Ink Writing With Kaolin Suspensions
,”
J. Mater. Chem. C
,
6
(
42
), pp.
11392
11400
.10.1039/C8TC03152E
66.
Yang
,
H.-A.
,
Wu
,
M.
, and
Fang
,
W.
,
2005
, “
Localized Induction Heating Solder Bonding for Wafer Level MEMS Packaging
,”
J. Micromech. Microengin.
,
15
(
2
), p.
394
.10.1088/0960-1317/15/2/020
67.
Oh
,
K. W.
,
Han
,
A.
,
Bhansali
,
S.
, and
Ahn
,
C. H.
,
2002
, “
A Low-Temperature Bonding Technique Using Spin-on Fluorocarbon Polymers to Assemble Microsystems
,”
J. Micromech. Microengin.
,
12
(
2
), p.
187
.10.1088/0960-1317/12/2/313
68.
Veerasamy
,
V. S.
, and
Bracamonte
,
M. D.
,
2016
, “
Low Temperature Hermetic Sealing Via Laser
,” U.S. Patent No 9441416B2.
69.
Lin
,
L.
,
2000
, “
Mems Post-Packaging by Localized Heating and Bonding
,”
IEEE Trans. Adv. Packag.
,
23
(
4
), pp.
608
616
.10.1109/6040.883749
70.
Lee
,
K.-J.
,
Kumai
,
S.
,
Arai
,
T.
, and
Aizawa
,
T.
,
2007
, “
Interfacial Microstructure and Strength of Steel/Aluminum Alloy Lap Joint Fabricated by Magnetic Pressure Seam Welding
,”
Mater. Sci. Eng.: A
,
471
(
1–2
), pp.
95
101
.10.1016/j.msea.2007.04.033
71.
Lucia
,
O.
,
Maussion
,
P.
,
Dede
,
E. J.
, and
Burdío
,
J. M.
,
2014
, “
Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges
,”
IEEE Trans. Ind. Electron.
,
61
(
5
), pp.
2509
2520
.10.1109/TIE.2013.2281162
72.
Rudnev
,
V.
,
Loveless
,
D.
, and
Cook
,
R. L.
,
2017
,
Handbook of Induction Heating
,
CRC Press
, Landon.
73.
Peng
,
Y.
,
Wang
,
S.
,
Cheng
,
H.
, and
Chen
,
M.
,
2016
, “
Whole Inorganic Hermetic Packaging Technology Using Localized Induction Heating for Deep Ultraviolet Light-Emitting Diodes
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
9
), pp.
1456
1461
.10.1109/TCPMT.2016.2600279
74.
Peng
,
Y.
,
Wang
,
S.
,
Cheng
,
H.
,
Wang
,
H.
,
Chen
,
M.
, and
Liu
,
S.
,
2016
, “
Light Efficiency Enhancement of Deep Ultraviolet Light-Emitting Diodes Packaged by Nanostructured Silica Glass
,”
J. Disp. Technol.
,
12
(
10
), pp.
1106
1111
.10.1109/JDT.2016.2564986
75.
Fujii
,
T.
,
Gao
,
Y.
,
Sharma
,
R.
,
Hu
,
E.
,
DenBaars
,
S.
, and
Nakamura
,
S.
,
2004
, “
Increase in the Extraction Efficiency of GaN-Based Light-Emitting Diodes Via Surface Roughening
,”
Appl. Phys. Lett.
,
84
(
6
), pp.
855
857
.10.1063/1.1645992
76.
Huang
,
H.-W.
,
Kao
,
C.
,
Chu
,
J.
,
Kuo
,
H.
,
Wang
,
S.
, and
Yu
,
C.
,
2005
, “
Improvement of InGaN-GaN Light-Emitting Diode Performance With a Nano-Roughened p-GaN Surface
,”
IEEE Photon. Technol. Lett.
,
17
(
5
), pp.
983
985
.10.1109/LPT.2005.846741
77.
Ee
,
Y.-K.
,
Kumnorkaew
,
P.
,
Arif
,
R. A.
,
Tong
,
H.
,
Gilchrist
,
J. F.
, and
Tansu
,
N.
,
2009
, “
Light Extraction Efficiency Enhancement of Ingan Quantum Wells Light-Emitting Diodes With Polydimethylsiloxane Concave Microstructures
,”
Opt. Express
,
17
(
16
), pp.
13747
13757
.10.1364/OE.17.013747
78.
Bao
,
K.
,
Kang
,
X. N.
,
Zhang
,
B.
,
Dai
,
T.
,
Xiong
,
C.
,
Ji
,
H.
,
Zhang
,
G. Y.
, and
Chen
,
Y.
,
2007
, “
Improvement of Light Extraction From Patterned Polymer Encapsulated GaN-Based Flip-Chip Light-Emitting Diodes by Imprinting
,”
IEEE Photon. Technol. Lett.
,
19
(
22
), pp.
1840
1842
.10.1109/LPT.2007.908731
79.
Khizar
,
M.
,
Fan
,
Z.
,
Kim
,
K.
,
Lin
,
J.
, and
Jiang
,
H.
,
2005
, “
Nitride Deep-Ultraviolet Light-Emitting Diodes With Microlens Array
,”
Appl. Phys. Lett.
,
86
(
17
), p.
173504
.10.1063/1.1914960
80.
Peng
,
Y.
,
Guo
,
X.
,
Liang
,
R.
,
Mou
,
Y.
,
Cheng
,
H.
,
Chen
,
M.
, and
Liu
,
S.
,
2017
, “
Fabrication of Microlens Arrays With Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs
,”
ACS Photonics
,
4
(
10
), pp.
2479
2485
.10.1021/acsphotonics.7b00692
81.
Liang
,
R.
,
Dai
,
J.
,
Xu
,
L.
,
He
,
J.
,
Wang
,
S.
,
Peng
,
Y.
,
Wang
,
H.
,
Ye
,
L.
, and
Chen
,
C.
,
2018
, “
High Light Extraction Efficiency of Deep Ultraviolet LEDs Enhanced Using Nanolens Arrays
,”
IEEE Trans. Electron Devices
,
65
(
6
), pp.
2498
2503
.10.1109/TED.2018.2823742
82.
Ichikawa
,
M.
,
Fujioka
,
A.
,
Kosugi
,
T.
,
Endo
,
S.
,
Sagawa
,
H.
,
Tamaki
,
H.
,
Mukai
,
T.
,
Uomoto
,
M.
, and
Shimatsu
,
T.
,
2016
, “
High-Output-Power Deep Ultraviolet Light-Emitting Diode Assembly Using Direct Bonding
,”
Appl. Phys. Exp.
,
9
(
7
), p.
072101
.10.7567/APEX.9.072101
83.
Yan
,
X.
,
Shatalov
,
M.
,
Saxena
,
T.
, and
Shur
,
M. S.
,
2013
, “
Deep-Ultraviolet Tailored-and Low-Refractive Index Antireflection Coatings for Light-Extraction Enhancement of Light Emitting Diodes
,”
J. Appl. Phys.
,
113
(
16
), p.
163105
.10.1063/1.4802663
84.
Nagai
,
S.
,
Yamada
,
K.
,
Hirano
,
A.
,
Ippommatsu
,
M.
,
Ito
,
M.
,
Morishima
,
N.
,
Aosaki
,
K.
,
Honda
,
Y.
,
Amano
,
H.
, and
Akasaki
,
I.
,
2016
, “
Development of Highly Durable Deep-Ultraviolet AlGaN-Based LED Multichip Array With Hemispherical Encapsulated Structures Using a Selected Resin Through a Detailed Feasibility Study
,”
Jpn. J. Appl. Phys.
,
55
(
8
), p.
082101
.10.7567/JJAP.55.082101
85.
Yamada
,
K.
,
Nagasawa
,
Y.
,
Nagai
,
S.
,
Hirano
,
A.
,
Ippommatsu
,
M.
,
Aosaki
,
K.
,
Honda
,
Y.
,
Amano
,
H.
, and
Akasaki
,
I.
,
2018
, “
Study on the Main-Chain Structure of Amorphous Fluorine Resins for Encapsulating AlGaN-Based DUV-LEDs
,”
Phys. Status Solidi (a)
,
215
(
10
), p.
1700525
.10.1002/pssa.201700525
86.
Li
,
D.
,
Jiang
,
K.
,
Sun
,
X.
, and
Guo
,
C.
,
2018
, “
AlGaN Photonics: Recent Advances in Materials and Ultraviolet Devices
,”
Adv. Opt. Photonics
,
10
(
1
), pp.
43
110
.10.1364/AOP.10.000043
87.
Liang
,
R.
,
Dai
,
J.
,
Xu
,
L.
,
Zhang
,
Y.
,
He
,
J.
,
Wang
,
S.
,
Chen
,
J.
,
Peng
,
Y.
,
Ye
,
L.
,
Kuo
,
H.-C.
, and
Chen
,
C.
,
2018
, “
Interface Anchored Effect on Improving Working Stability of Deep Ultraviolet Light-Emitting Diode Using Graphene Oxide-Based Fluoropolymer Encapsulant
,”
ACS Appl. Mater. Interfaces
,
10
(
9
), pp.
8238
8244
.10.1021/acsami.7b17668
88.
Peng
,
Y.
,
Guo
,
X.
,
Liang
,
R.
,
Cheng
,
H.
, and
Chen
,
M.
,
2017
, “
Enhanced Light Extraction From DUV-LEDs by AlN-Doped Fluoropolymer Encapsulation
,”
IEEE Photon. Technol. Lett.
,
29
(
14
), pp.
1151
1154
.10.1109/LPT.2017.2705722
You do not currently have access to this content.