Successful utilization of the inherent capability of wide bandgap materials and architectures for radio frequency (RF) power amplifiers (PAs) necessitates the creation of an alternative thermal management paradigm. Recent “embedded cooling” efforts in the aerospace industry have focused on overcoming the near-junction thermal limitations of conventional electronic materials and enhancing removal of the dissipated power with on-chip cooling. These efforts, focusing on the use of diamond substrates and microfluidic jet impingement, are ushering in a new generation (Gen3) of thermal packaging technology. Following the introduction of a modified Johnson's figure-of-merit (JFOM-k), which includes thermal conductivity to reflect the near-junction thermal limitation, attention is turned to the options, challenges, and techniques associated with the development of embedded thermal management technology (TMT). Record GaN-on-Diamond transistor linear power of 11 W/mm, transistor power fluxes in excess of 50 kW/cm2, and heat fluxes, above 40 kW/cm2, achieved in Defense Advanced Research Projects Agency (DARPA)'s near-junction thermal transport (NJTT) program, are described. Raytheon's ICECool demonstration monolithic microwave integrated circuits (MMICs), which achieved 3.1× the CW RF power output and 4.8× the CW RF power density relative to a baseline design, are used to illustrate the efficacy of Gen3 embedded cooling.

References

References
1.
Rais-Zadeh
,
M.
,
Gokhale
,
V. J.
,
Ansari
,
A.
,
Faucher
,
M.
,
Theron
,
D.
,
Cordier
,
Y.
, and
Buchaillot
,
L.
,
2014
, “
Gallium Nitride as an Electromechanical Material
,”
J. Microelectromech. Syst.
,
23
(
6
), pp.
1252
1271
.
2.
NSM Archive
, 2017, “
NSM Archive—Physical Properties of Semiconductors
,” accessed Nov. 15, 2017, www.ioffe.ru/SVA/NSM/Semicond/
3.
Higashiwaki
,
M.
, and
Jessen
,
G. H.
,
2018
, “
Guest Editorial: The Dawn of Gallium Oxide Microelectronics
,”
Appl. Phys. Lett.
,
112
(
6
), p.
060401
.
4.
Johnson
,
A.
,
1965
, “
Physical Limitations on Frequency and Power Parameters of Transistors
,”
RCA Rev.
,
26
, pp.
163
177
.
5.
Rosker
,
M.
,
Bozada
,
C.
,
Dietrich
,
H.
,
Hung
,
A.
,
Via
,
G. D.
,
Binari
,
S.
,
Vivierios
,
E.
,
Cohen
,
E.
, and
Hodiak
,
J.
,
2009
, “
The DARPA Wide Band Gap Semiconductors for RF Applications (WBGS-RF) Program: Phase II Results
,” CS ManTech 1.2, Tampa, FL, May, pp.
1
4
.
6.
Rosker
,
M. J.
,
Albrecht
,
J. D.
,
Cohen
,
E.
,
Hodiak
,
J.
, and
Chang
,
T.-H.
,
2010
, “
DARPA's GaN Technology Thrust
,”
IEEE MTT-S International Microwave Symposium
, Anaheim, CA, May 23–28.
7.
Albrecht
,
J. D.
,
Chang
,
T.-H.
,
Kane
,
A. S.
, and
Rosker
,
M. J.
,
2010
, “
DARPA's Nitride Electronic NeXt Generation Technology
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
(
CSICS
), Monterey, CA, Nov. 4, pp.
1
4
.
8.
Manz
,
B.
, “
Mouser.com/Applications/RF Power: GaN Moves in for the Kill, Manz Communication
,” accessed Nov. 10, 2017, www.Mouser.com/Applications/RF Power
9.
Chao
,
P. C.
,
Chu
,
K.
,
Creamer
,
C.
,
Diaz
,
J.
,
Yurovchak
,
T.
,
Shur
,
M.
,
Kallaher
,
R.
,
McGray
,
C.
,
Via
,
G.
, and
Blevins
,
J.
,
2015
, “
Low-Temperature Bonded GaN-on-Diamond HEMTs With 11 W/mm Output Power at 10 GHz
,”
IEEE Trans. Electron Devices
,
62
(
11
), pp.
3658
3664
.
10.
Blevins
,
J. D.
,
Via
,
G. D.
,
Bar-Cohen
,
A.
, and
Sivananthan
,
A.
,
2016
, “
Developing a New Thermal Paradigm for Gallium Nitride (GaN) Device Technology
,”
CS ManTech
, Miami, FL, pp.
141
146
.
11.
Wu
,
Y.-F.
,
Moore
,
M.
,
Saxler
,
A.
,
Wisleder
,
T.
, and
Parikh
,
P.
,
2006
, “
40-W/mm Double Field-Plated GaN HEMTs
,”
64th Device Research Conference
, State College, PA, June, pp.
151
152
.
12.
Wu
,
Y.-F.
,
Saxler
,
A.
,
Moore
,
M.
,
Smith
,
R. P.
,
Sheppard
,
S.
,
Chavarkar
,
P. M.
,
Wisleder
,
T.
,
Mishra
,
U. K.
, and
Parikh
,
P.
,
2004
, “
30-W/mm GaN HEMTs by Field Plate Optimization
,”
IEEE Electron Device Lett.
,
25
(
3
), pp.
117
119
.
13.
Via
,
G. D.
,
2014
, “
GaN Reliability—Where we Are and Where we Need to Go
,”
CS ManTech
, Denver, CO, May, pp.
15
18
.
14.
Walker, J. L. B.,
2011
,
Handbook of RF and Microwave Power Amplifiers
, ed.,
Cambridge University Press
,
Cambridge, UK
.
15.
Market Focus: GaN Materials
,
2017
, “
Bulk GaN Substrate Market Growing at 10% CAGR to $100M in 2022, From 60,000 Wafers in 2016
,”
Semicond. Today
,
12
(
2
), Epub.
16.
Bar-Cohen
,
A.
,
2014
, “
Towards Embedded Cooling – Gen-3 Thermal Packaging Technology
,”
Cooling of Microelectronic and Nanoelectronic Equipment: Advances and Emerging Research
,
M.
Iyengar
,
K. J. L.
Geisler
, and
B.
Sammakia
, eds.,
World Scientific Publishing Company
,
Singapore
, Chap. 16.
17.
Bloschock
,
K. P.
, and
Bar-Cohen
,
A.
,
2012
, “
Advanced Thermal Management Technologies for Defense Electronics
,”
Proc. SPIE
,
8405
, p.
84050
.
18.
Bar-Cohen
,
A.
,
Matin
,
K.
,
Jankowski
,
N.
, and
Sharar
,
D.
,
2015
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
010801
.
19.
Bar-Cohen
,
A.
,
Matin
,
K.
, and
Narumanchi
,
S.
,
2015
, “
Nano Thermal Interfaces: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
.
20.
Calame
,
J. P.
,
Myers
,
R. E.
,
Wood
,
F. N.
, and
Binari
,
S. C.
,
2005
, “
Simulations of Direct-Die-Attached Microchannel Coolers for the Thermal Management of GaN-on-SiC Microwave Amplifiers
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
4
), pp.
797
809
.
21.
Holzwarth
,
S.
,
Litschke
,
O.
,
Simon
,
W.
,
Fischer
,
H.
,
Kassner
,
J.
, and
Serwa
,
A.
,
2010
, “
Highly Integrated 8x8 Antenna Array Demonstrator on LTCC With Integrated RF Circuitry and Liquid Cooling
,”
EuCAP 2010
, Barcelona, Spain, pp.
377
380
.
22.
Goth
,
G. F.
,
Arvelo
,
A.
,
Eagle
,
J.
,
Ellsworth
,
M. J.
,
Marston
,
K. C.
,
Sinha
,
A. K.
, and
Zitz
,
J. A.
,
2012
, “
Thermal and Mechanical Analysis and Design of the IBM Power 775 Water Cooled Supercomputing Central Electronics Complex
,”
13th IEEE ITHERM Conference
, San Diego, CA, May, pp.
700
709
.
23.
NJTT,
2010
, “
Near Junction Thermal Transport (NJTT)
,” Standard No. DARPA-BAA-11-09.
24.
Defense Advanced Research Projects Agency
,
2012
, “
Intrachip/Interchip Enhanced Cooling Fundamentals (ICECool Fundamentals)
,” Standard No. DARPA-BAA-12-50.
25.
Defense Advanced Research Projects Agency
,
2013
, “
Intrachip/Interchip Enhanced Cooling Applications (ICECool Applications)
,” Standard No. DARPA-BAA-13-21.
26.
Tyhach
,
M.
,
Altman
,
D.
,
Bernstein
,
S.
,
Korenstein
,
R.
,
Cho
,
J.-W.
,
Goodson
,
K. E.
,
Francis
,
D.
,
Faili
,
F.
,
Ejeckam
,
F.
,
Kim
,
S.
, and
Graham
,
S.
,
2014
, “
S2-T3: Next Generation Gallium Nitride HEMTs Enabled by Diamond Substrates
,”
IEEE Lester Eastman Conference on High Performance Devices (LEC)
, Ithaca, NY, Aug., pp.
1
4
.
27.
Pomeroy
,
J.
,
Bernardoni
,
M.
,
Sarua
,
A.
,
Manoi
,
A.
,
Dumka
,
D. C.
,
Fanning
,
D. M.
, and
Kuball
,
M.
,
2013
, “
Achieving the Best Thermal Performance for GaN-on-Diamond
,”
IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
, Monterey, CA, Oct., pp. 1–4.
28.
Bozorg-Grayeli
,
E.
,
Sood
,
A.
,
Asheghi
,
M.
,
Gambin
,
V.
,
Sandhu
,
R.
,
Feygelson
,
T. I.
,
Pate
,
B. B.
,
Hobart
,
K.
, and
Goodson
,
K. E.
,
2013
, “
ThermalConduction Inhomogeneity of Nanocrystalline Diamond Films by Dual-Side Thermoreflectance
,”
Appl. Phys. Lett.
,
102
(
11
), p.
111907
.
29.
Graebner
,
J. E.
,
Jin
,
S.
,
Kammlott
,
G. W.
,
Herb
,
J. A.
, and
Gardinier
,
C. F.
,
1992
, “
Large Anisotropic Thermal Conductivity in Synthetic Diamond Films
,”
Nature
,
359
(
6394
), pp.
401
403
.
30.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Sivananthan
,
A.
,
2015
, “
Near-Junction Microfluidic Thermal Management of RF Power Amplifiers
,” IEEE International Conference on Microwaves, Communications, Antennas, and Electronic Systems (COMCAS 2015)
, Tel Aviv, Israel, pp.
1
8
.
31.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Sivananthan
,
A.
,
2016
, “
Near-Junction Microfluidic Cooling for Wide Bandgap Devices
,”
MRS Adv.
,
1
(
2
), pp.
181
195
.
32.
Tyhach
,
M.
,
Altman
,
D.
, and
Bernstein
,
S.
,
2015
, “
GaN on Diamond Technology: Impact and Challenges of Next Generation GaN
,” ASME InterPACK, San Francisco, CA, July.
33.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
34.
Yarin
,
L. P.
,
Mosyak
,
A.
, and
Hetsroni
,
G.
,
2009
,
Fluid Flow, Heat, and Boiling in Microchannels
,
Springer
,
Berlin
.
35.
Bar-Cohen
,
A.
,
Sheehan
,
J.
, and
Rahim
,
E.
,
2011
, “
Two-Phase Thermal Transport in Microgap Channels
,”
Microgravity Sci. Technol.
,
24
(
1
), pp.
1
15
.
36.
Matin
,
K.
,
Bar-Cohen
,
A.
, and
Maurer
,
J. J.
,
2015
, “
Modeling and Simulation Challenges in Embedded Two Phase Cooling: DARPA's ICECool Program
,”
ASME
Paper No. IPACK2015-48334.
37.
Krauss
,
A. D.
, and
Bar-Cohen
,
A.
,
1995
,
Design and Analysis of Heat Sinks
,
Wiley
,
New York
.
38.
Wang
,
P.
,
2007
, “
On-Chip Thermoelectric Cooling of Semiconductor Hot Spot
,” Ph.D. dissertation, University of Maryland, College Park, MD.
39.
Ejeckam
,
F.
,
Francis
,
D.
,
Faili
,
F.
,
Lowe
,
F.
,
Wilman
,
J.
,
Mollart
,
T.
,
Dodson
,
J.
,
Twitchen
,
D.
,
Bolliger
,
B.
, and
Babic
,
D.
,
2014
, “
GaN-on-Diamond: The Next GaN
,”
Microwave J.
, pp.
124
134
.
40.
Dumka
,
D. C.
,
Chou
,
T. M.
,
Faili
,
F.
,
Francis
,
D.
, and
Ejeckam
,
F.
,
2013
, “
AlGaN/GaN HEMTs on Diamond Substrate With Over 7W/mm Output Power Density at 10 GHz
,”
Electron. Lett.
,
49
(
20
), pp.
1298
1299
.
41.
Tyhach
,
M.
,
Altman
,
D.
,
Bernstein
,
S.
,
Korenstein
,
R.
,
Cho
,
J.-W.
,
Goodson
,
K. E.
,
Francis
,
D.
,
Faili
,
F.
,
Ejeckam
,
F.
,
Kim
,
S.
, and
Graham
,
S.
,
2014
, “
S2-T3: Next Generation Gallium Nitride HEMTs Enabled by Diamond Substrates
,”
IEEE Lester Eastman Conference on High Performance Devices
(
LEC
), Ithaca, NY, Aug. 5–7, pp.
1
4
.
42.
Dumka
,
D.
,
Chou
,
T.
,
Jimenez
,
J.
,
Fanning
,
D.
,
Francis
,
D.
,
Faili
,
F.
,
Ejeckam
,
F.
,
Bernardoni
,
M.
,
Pomeroy
,
J.
, and
Kuball
,
M.
,
2013
, “
Electrical and Thermal Performance of AlGaN/GaN HEMTs on Diamond Substrate for RF Applications
,” Compound Semiconductor Integrated Circuit Symposium (
CSICS
), Monterey, CA, Oct. 13–16, pp. 1–4.
43.
Altman
,
D.
,
Tyhach
,
M.
,
McClymonds
,
J.
,
Kim
,
S.
,
Graham
,
S.
,
Cho
,
J.
,
Goodson
,
K.
,
Francis
,
D.
,
Faili
,
F.
,
Ejeckam
,
F.
, and
Bernstein
,
S.
,
2014
, “
Analysis and Characterization of Thermal Transport in GaN HEMTs on Diamond Substrates
,” Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
1199
1205
.
44.
Dumka
,
D.
, and
Chou
,
T.
,
2014
, “
GaN-on-Diamond HEMTs: Road to Maximum Utilization of RF Power Capabilities of GaN
,” IEEE Lester Eastman Conference on High Performance Devices (
LEC
), Ithaca, NY, Aug., pp.
1
4
.
45.
Sandhu
,
R.
,
Gambin
,
V.
,
Poust
,
B.
,
Smorchkova
,
I.
,
Lewis
,
G.
,
Elmadjian
,
R.
,
Li
,
D.
,
Geiger
,
C.
,
Heying
,
B.
,
Wojtowicz
,
M.
,
Oki
,
A.
,
Feygelson
,
T.
,
Hobart
,
K.
,
Pate
,
B.
,
Tabeling
,
J.
,
Bozorg-Grayeli
,
E.
, and
Goodson
,
K.
,
2013
, “
GaN HEMT Near Junction Heat Removal
,”
CSManTech
, New Orleans, LA, May, pp.
175
178
.
46.
Poust
,
B.
,
Gambin
,
V.
,
Sandhu
,
R.
,
Smorchkova
,
I.
,
Lewis
,
G.
,
Elmadjian
,
R.
,
D.-J
,
L.
,
Geiger
,
C.
,
Heying
,
B.
,
Wojtowicz
,
M.
,
Oki
,
A.
,
Pate
,
B. B.
,
Feygelson
,
T.
, and
Hobart
,
K.
,
2013
, “
Selective Growth of Diamond in Thermal Vias for GaN HEMTs
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
, Monterey, CA, Oct., pp.
1
4
.
47.
Tadjer
,
M.
,
Hobart
,
K.
,
Feygelson
,
T.
,
Wang
,
A.
,
Anderson
,
T.
,
Koehler
,
A.
,
Calle
,
F.
,
Pate
,
B.
,
Kub
,
F.
, and
Eddy
,
C.
,
2014
, “
Diamond-Coated High Density Vias for Silicon Substrate-Side Thermal Management of GaN HEMTs
,”
CS MANTECH
, Denver, CO, May, pp.
283
286.
48.
Chu
,
K.
,
Chao
,
P. C.
,
Diaz
,
J.
,
Yurovchak
,
T.
,
Schmanski
,
B.
,
Creamer
,
C.
,
Sweetland
,
S.
,
Kallaher
,
R.
,
McGray
,
C.
,
Via
,
G. D.
, and
Blevins
,
J. D.
,
2015
, “
High Performance GaN-on-Diamond HEMTs Fabricated by Low-Temperature Device Transfer Process
,”
IEEE Csics
, Monterey, CA, Oct., pp.
1
4
.
49.
Ditri
,
J.
,
Hahn
,
J.
,
Cadotte
,
R.
,
McNulty
,
M.
, and
Luppa
,
D.
,
2015
, “
Embedded Cooling of High Heat Flux Electronics Utilizing Distributed Microfluidic Impingement Jets
,”
ASME
Paper No. IPACK2015-48689.
50.
Ditri
,
J.
,
McNulty
,
M.
, and
Igoe
,
S.
,
2014
, “
Embedded Microfluidic Cooling of High Heat Flux Electronic Components
,” Lester Eastman Conference on High Performance Devices (
LEC
), Ithaca, NY, Aug. 5–7, pp.
1
4
.
51.
Adams
,
C.
,
2015
,
Cool It! Heat Relief for RF Power Chips
,
Avionics Magazine
.
52.
Gambin
,
V.
,
Poust
,
B.
,
Watanabe
,
M.
,
Ferizovic
,
D.
,
Oki
,
A.
,
Wojtowicz
,
M.
,
Hobart
,
K.
, and
Mandrusiak
,
G.
,
2015
, “
Impingement Cooled Embedded Diamond (ICED) GaN HEMTs
,” ASME InterPACK, San Francisco, CA, July.
53.
Gambin
,
V.
,
Poust
,
B.
,
Ferizovic
,
D.
,
Watanabe
,
M.
,
Mandrusiak
,
G.
,
Lin
,
D.
, and
Dusseault
,
T.
,
2016
, “
Impingement Cooled Embedded Diamond Multi-Physics Co-Design
,” Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 31–June 3.
54.
Creamer
,
C.
,
Chu
,
K.
,
Chao
,
P. C.
,
Schmanski
,
B.
,
Yurovchak
,
T.
, and
Sweetland
,
S.
,
2014
, “
Microchannel Cooled, High Power GaN on Diamond MMIC
,” Lester Eastman Conference on High Performance Devices (
LEC
), Ithaca, NY, Aug. 5–7.
55.
Altman
,
D. H.
,
2017
, “
Development of a Diamond Microfluidics-Based Intra-Chip Cooling Technology for GaN
,” ASME InterPACK, San Francisco, CA, July 6–9, pp. V003T04A006.
56.
Altman
,
D. H.
,
2017
, “
Advanced Thermal Solutions for GaN RF Electronics
,” Presentation, IEEE ITherm, Orlando, FL, May.
57.
Weaver
,
S.
,
Mandrusiak
,
G.
,
Chen
,
N.
,
Boomhower
,
O.
,
Brewer
,
J.
,
Davis
,
R.
,
Vetury
,
R.
, and
Henry
,
H.
, “
Experimental Development of a Near Junction Microchannel Heat Spreader
,” Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp. 966–975.
58.
Gorle
,
C.
,
Parida
,
P.
,
Houshmand
,
F.
,
Asheghi
,
M.
, and
Goodson
,
K.
,
2014
, “
Volume-of-Fluid Simulation for Predicting Two-Phase Cooling in a Microchannel
,”
67th Annual Meeting of the APS Division of Fluid Dynamics
, San Francisco, CA, Nov. 23–25.http://apsdfd2014.stanford.edu/
59.
Yang
,
F.
,
Schultz
,
M.
,
Parida
,
P.
,
Colgan
,
E.
,
Polastre
,
R.
,
Dang
,
B.
,
Tsang
,
C.
,
Gaynes
,
M.
,
Knickerbocker
,
J.
, and
Chainer
,
T.
,
2015
, “
Local Measurements of Flow Boiling Heat Transfer on Hot Spots
,”
ASME
Paper No. IPACK2015-48341.
60.
Green
,
C.
,
Kottke
,
P.
,
Han
,
X.
,
Woodrum
,
C.
,
Sarvey
,
T.
,
Asrar
,
P.
,
Zhang
,
X.
,
Joshi
,
Y.
,
Fedorov
,
A.
,
Sitaraman
,
S.
, and
Bakir
,
M.
,
2015
, “
A Review of Two-Phase Forced Cooling in Three-Dimensional Stacked Electronics: Technology Integration
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040802
.
61.
Hanks
,
D. F.
,
Narayan
,
S.
,
Bagnall
,
K. R.
,
Raj
,
R.
,
Xiao
,
R.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2014
, “
Nanoporous Evaporative Device for Advanced Electronics Thermal Management
,” Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30.
62.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2015
, “
Spurious Current Suppression in VOF-CSF Simulation of Slug Flow Through Small Channels
,”
Numer. Heat Transfer Part A: Appl.
,
67
(
1
), pp.
1
12
.
63.
Mandel
,
R. K.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2014
, “
2.5-D Modeling of Manifold Microchannels in Thin Film Evaporation
,”
Nineth International Conference on Two Phase Systems for Ground and Space Applications
, Baltimore, MD, Sept.
64.
Khanna
,
S.
,
McCluskey
,
P.
,
Bar-Cohen
,
A.
,
Yang
,
B.
, and
Ohadi
,
M.
,
2017
, “
Thin Thermally Efficient ICECool Defense Semiconductor Power Amplifiers
,”
J. Microelectron. Electron. Packag.
,
14
(
3
), pp.
77
93
.
You do not currently have access to this content.