Fatigue failure of solder joints is one of the major causes of failure in electronic devices. Fatigue life prediction models of solder joints were first put forward in the early 1960s, and since then, numbers of methods were used to model the fatigue mechanism of solder joints. In this article, the majority fatigue life models are summarized, with emphasis on the latest developments in the fatigue life prediction methods. All the models reviewed are grouped into four categories based on the factors affecting the fatigue life of solder joints, which are: plastic strain-based fatigue models, creep damage-based fatigue models, energy-based fatigue models, and damage accumulation-based fatigue models. The models that do not fit any of the above categories are grouped into “other models.” Applications and potential limitations for those models are also discussed.

References

1.
Zahn
,
B. A.
,
2003
, “
Solder Joint Fatigue Life Model Methodology for 63Sn37Pb and 95.SSn4AgO.SCu Materials
,” Electronic Components and Technology Conference (
ECTC
), New Orleans, LA, May 27–30, pp. 83–94.https://pdfs.semanticscholar.org/f1a3/afe5d7c31e7a3c62b049c545729ca7276e9b.pdf
2.
Lau
,
J.
, and
Pao
,
Y.
,
1997
,
Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies
,
McGraw-Hill Professional Publishing
, New York.
3.
Lau
,
J.
, and
Wong
,
C. P.
,
2002
,
Electronics Manufacturing: With Lead-Free, Halogen-Free, and Conductive-Adhesive Materials
,
McGraw-Hill Professional
, New York.
4.
Wang
,
J.
,
Niu
,
Y.
, and
Park
,
S.
,
2018
, “
Modeling and Design of 2.5D Package With Mitigated Warpage and Enhanced Thermo-Mechanical Reliability
,” IEEE 68th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29–June 1, pp. 2477–2483.
5.
Shao
,
S.
,
Niu
,
Y.
, and
Wang
,
J.
,
2018
, “
Comprehensive Study on 2.5D Package Design for Board-Level Reliability in Thermal Cycling and Power Cycling
,” IEEE 68th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29–June 1, pp. 1668–1675.
6.
Wang
,
J.
,
2018
,
A Study on Thermal and Moisture Impacts on Reliability of Electronic Packaging
,
Binghamton University
,
Binghamton, NY
.
7.
Hamasha
,
S.
,
Qasaimeh
,
A.
,
Jaradat
,
Y.
, and
Borgesen
,
P.
,
2015
, “
Correlation Between Solder Joint Fatigue Life and Accumulated Work in Isothermal Cycling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
9
), pp.
1292
1299
.
8.
Qasaimeh
,
A.
,
Hamasha
,
S.
,
Jaradat
,
Y.
, and
Borgesen
,
P.
,
2015
, “
Damage Evolution in Lead Free Solder Joints in Isothermal Fatigue
,”
ASME J. Electron. Packag.
, 137(2), p. 021012.
9.
Obaidat
,
M.
,
Hamasha
,
S.
,
Jaradat
,
Y.
,
Qasaimeh
,
A.
,
Arfaei
,
B.
,
Anselm
,
M.
, and
Borgesen
,
P.
,
2013
, “
Effects of Varying Amplitudes on the Fatigue Life of Lead Free Solder Joints
,” IEEE 63rd Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp. 1308–1314.
10.
Batieha
,
F.
,
Hamasha
,
S.
,
Jaradat
,
Y.
,
Wentlent
,
L.
,
Qasaimeh
,
A.
, and
Borgesen
,
P.
,
2015
, “
Challenges for the Prediction of Solder Joint Life in Long Term Vibration
,” IEEE 65th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 26–29, pp. 1553–1559.
11.
Borgesen
,
P.
,
Wentlent
,
L.
,
Hamasha
,
S.
,
Khasawneh
,
S.
,
Shirazi
,
S.
,
Schmitz
,
D.
,
Alghoul
,
T.
,
Greene
,
C.
, and
Yin
,
L.
,
2018
, “
A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints
,”
J. Electron. Mater.
,
47
(
5
), pp.
2526
2544
.
12.
Hamasha
,
S.
, and
Borgesen
,
P.
,
2016
, “
Effects of Strain Rate and Amplitude Variations on Solder Joint Fatigue Life in Isothermal Cycling
,”
ASME J. Electron. Packag.
, 138(2), p. 021002.
13.
Borgesen
,
P.
,
Hamasha
,
S.
,
Wentlent
,
L.
,
Watson
,
D.
, and
Greene
,
C.
,
2016
, “
Interpreting Accelerated Test Results for Lead Free Solder Joints
,” Pan Pacific Microelectronics Symposium (
Pan Pacific
), Big Island, HI, Jan. 25–28, pp. 1–9.
14.
Hamasha
,
S.
,
Su
,
S.
,
Akkara
,
F.
,
Dawahdeh
,
A.
,
Borgesen
,
P.
, and
Qasaimeh
,
A.
,
2017
, “
Solder Joint Reliability in Isothermal Varying Load Cycling
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp. 1331–1336.
15.
Su
,
S.
,
Jian
,
M.
,
Akkara
,
F. J.
,
Hamasha
,
S.
, and
Suhling
,
J.
,
2018
, “
Fatigue and Shear Properties of High Reliable Solder Joints for Harsh Applications
,”
SMTA International
, Rosemont, IL, Oct. 14–18.https://www.smta.org/knowledge/proceedings_abstract.cfm?PROC_ID=5276
16.
]
Akay
,
H. U.
,
Paydar
,
N. H.
, and
Bilgic
,
A.
,
1997
, “
Fatigue Life Predictions for Thermally Loaded Solder Joints Using a Volume-Weighted Averaging Technique
,”
ASME J. Electron. Packag.
,
119
(
4
), pp.
228
235
.
17.
Schmitz
,
D.
,
Shirazi
,
S.
,
Wentlent
,
L.
,
Hamasha
,
S.
,
Yin
,
L.
,
Qasaimeh
,
A.
, and
Borgesen
,
P.
,
2014
, “
Towards a Quantitative Mechanistic Understanding of the Thermal Cycling of SnAgCu Solder Joints
,” IEEE 64th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 27–31, pp. 371–378.
18.
Hamasha
,
S.
,
Wentlent
,
L.
, and
Borgesen
,
P.
,
2015
, “
Statistical Variations of Solder Joint Fatigue Life Under Realistic Service Conditions
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
9
), pp.
1284
1291
.
19.
Hamasha
,
S.
,
Akkara
,
F.
,
Su
,
S.
,
Ali
,
H.
, and
Borgesen
,
P.
,
2018
, “
Effect of Cycling Amplitude Variations on SnAgCu Solder Joint Fatigue Life
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
8
(
11
), pp.
1896
1904
.
20.
Su
,
S.
,
Fu
,
N.
,
Akkara
,
F. J.
, and
Hamasha
,
S.
,
2018
, “
Effect of Long-Term Room Temperature Aging on the Fatigue Properties of SnAgCu Solder Joint
,”
ASME J. Electron. Packag.
, 140(3), p. 031005.
21.
Wu
,
C. M. L.
,
Yu
,
D. Q.
,
Law
,
C. M. T.
, and
Wang
,
L.
,
2004
, “
Properties of Lead-Free Solder Alloys With Rare Earth Element Additions
,”
Mater. Sci. Eng., R
,
44
(
1
), pp.
1
44
.
22.
Hamasha
,
S.
,
Akkara
,
F.
,
Abueed
,
M.
,
Rababah
,
M.
,
Zhao
,
C.
, and
Su
,
S.
,
2018
, “
Effect of Surface Finish and High Bi Solder Alloy on Component Reliability in Thermal Cycling
,” IEEE 68th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29–June 1, pp. 2032–2040.
23.
Su
,
S.
,
Akkara
,
F. J.
,
Abueed
,
M.
,
Jian
,
M.
,
Hamasha
,
S.
, and
Suhling
,
J.
,
2018
, “
Fatigue Properties of Lead-Free Doped Solder Joints
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp. 1243–1248.
24.
Hamasha
,
S.
,
Evans
,
J. L.
,
Bozack
,
M.
, and
Johnson
,
W.
,
2018
, “
Long-Term Isothermally Aged Concerns for SAC Lead-Free Solder in Harsh Environment Applications
,” Pan Pacific Microelectronics Symposium (
Pan Pacific
), Waimea, HI, Feb. 5–8, pp. 1–7.
25.
Manson
,
S. S.
,
1965
, “
Fatigue–A Complex Subject—Some Simple Approximations
,” Exp. Mech., 5(4), pp. 193–226.
26.
Schijve
,
J.
,
1967
,
Significance of Fatigue Cracks in Micro-Range and Macro-Range
,
ASTM International
,
Conshohocken, PA
.
27.
Shang
,
D.-G.
,
Yao
,
W.-X.
, and
Wang
,
D.-J.
,
1998
, “
A New Approach to the Determination of Fatigue Crack Initiation Size
,”
Int. J. Fatigue
,
20
(
9
), pp.
683
687
.
28.
Miller
,
K. J.
,
1987
, “
The Behaviour of Short Fatigue Cracks and Their Initiation: Part II—A General Summary
,”
Fatigue Fract. Eng. Mater. Struct.
,
10
(
2
), pp.
93
113
.
29.
Park
,
S.
,
Dhakal
,
R.
,
Lehman
,
L.
, and
Cotts
,
E.
,
2007
, “
Measurement of Deformations in SnAgCu Solder Interconnects Under In Situ Thermal Loading
,”
Acta Mater.
,
55
(
9
), pp.
3253
3260
.
30.
Suhling
,
J.
,
Gale
,
H.
,
Johnson
,
R.
,
Islam
,
M.
,
Shete
,
T.
,
Lall
,
P.
,
Bozack
,
M.
,
Evans
,
J.
,
Seto
,
P.
,
Gupta
,
T.
, and
Thompson
,
J.
,
2004
, “
Thermal Cycling Reliability of Lead Free Solders for Automotive Applications
,”
The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, June 1–4, pp. 350–357.
31.
Jang
,
J.-W.
,
Silva
,
A. P. D.
,
Drye
,
J. E.
,
Post
,
S. L.
,
Owens
,
N. L.
,
Lin
,
J.-K.
, and
Frear
,
D. R.
,
2007
, “
Failure Morphology After Drop Impact Test of Ball Grid Array (BGA) Package With Lead-Free Sn–3.8Ag–0.7Cu and Eutectic SnPb Solders
,”
IEEE Trans. Electron. Packag. Manuf.
,
30
(
1
), pp.
49
53
.
32.
Darveaux
,
R.
,
2000
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation
,” Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 21–24, pp. 1048–1058.
33.
Zhao
,
C.
,
Shen
,
C.
,
Hai
,
Z.
,
Basit
,
M.
,
Zhang
,
J.
,
Bozack
,
M. J.
,
Evans
,
J. L.
, and
Suhling
,
J. C.
,
2016
, “
Long Term Aging Effects on the Reliability of Lead Free Solder Joints in Ball Grid Array Packages With Various Pitch Sizes and Ball Arrangement
,”
J. Surf. Mount Technol.
,
29-2
, pp.
37
46
.https://www.smta.org/knowledge/journal_detail.cfm?ARTICLE_ID=251
34.
Zhao
,
C.
,
Sanders
,
T.
,
Hai
,
Z.
,
Shen
,
C.
, and
Evans
,
J. L.
,
2016
, “
Reliability Analysis of Lead-Free Solder Joints With Solder Doping on Harsh Environment
,” 49th International Symposium on Microelectronics, Pasadena, CA, Oct. 11–13, pp. 000117–000122.
35.
Thirugnanasambandam
,
S.
,
Sanders
,
T.
,
Evans
,
J.
,
Bozack
,
M.
,
Johnson
,
W.
, and
Suhling
,
J.
,
2014
, “
Component Level Reliability for High Temperature Power Computing With Sac305 and Alternative High Reliability Solders
,”
SMTA International
, Rosemont, IL, Sept. 27–Oct. 1, pp. 144–150.https://www.smta.org/knowledge/proceedings_abstract.cfm?PROC_ID=4033
36.
Lee
,
W.
,
Nguyen
,
L.
, and
Selvaduray
,
G.
,
2000
, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
(
2
), pp.
231
244
.
37.
Lee
,
J.
, and
Jeong
,
H.
,
2014
, “
Fatigue Life Prediction of Solder Joints With Consideration of Frequency, Temperature and Cracking Energy Density
,”
Int. J. Fatigue
,
61
, pp.
264
270
.
38.
Paydar
,
N.
,
Tong
,
Y.
, and
Akay
,
H.
,
1994
, “
A Finite Element Study of Factors Affecting Fatigue Life of Solder Joints
,”
ASME J. Electron. Packag.
,
16
(
4
), pp.
265
273
.
39.
Shi
,
X.
,
Pang
,
H.
,
Zhou
,
W.
, and
Wang
,
Z.
,
1999
, “
A Modified Energy-Based Low Cycle Fatigue Model for Eutectic Solder Alloy
,”
Fatigue Eutectic Alloy
,
41
(
3
), pp.
289
296
.
40.
Engelmaier
,
W.
,
1990
, “
The Use Environments of Electronic Assemblies and Their Impact on Surface Mount Solder Attachment Reliability
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol
., 13(4), pp. 903–908.
41.
Coffin
,
L. F. J.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
, 76, pp.
931
950
.
42.
Shi
,
X.
,
Pang
,
H.
,
Zhou
,
W.
, and
Wang
,
Z.
,
2000
, “
Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy
,”
Int. J. Fatigue
,
22
(
3
), pp.
217
228
.
43.
Preeti
,
C.
,
Michael
,
O.
,
Ricky
,
L. S. W.
, and
Michael
,
P.
,
2009
, “
Critical Review of the Engelmaier Model for Solder Joint Creep Fatigue Reliability
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
3
), pp.
693
700
.
44.
Engelmaier
,
W.
, and
Attarwala
,
A.
,
1989
, “
Surface-Mount Attachment Reliability of Clip-Leaded Ceramic Chip Carriers on FR-4 Circuit Boards
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
12
(
2
), pp.
284
296
.
45.
Solomon
,
H.
,
1986
, “
Fatigue of 60/40 Solder
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
9
(
4
), pp.
423
432
.
46.
Norris
,
K. C.
, and
Landzberg
,
A. H.
,
1969
, “
Reliability of Controlled Collapse Interconnections
,”
IBM J. Res. Develop.
,
13
(
3
), pp.
266
271
.
47.
Pan
,
N.
,
Henshall
,
G. A.
,
Billaut
,
F.
,
Dai
,
S.
,
Strum
,
M. J.
,
Benedetto
,
E.
, and
Rayner
,
J.
,
2005
, “
An Acceleration Model for Sn-Ag-Cu Solder Joint Reliability Under Various Thermal Cycle Conditions
,”
SMTA International
, Rosemont, IL, Sept. 25–29, pp. 876–883.https://www.smta.org/knowledge/proceedings_abstract.cfm?PROC_ID=1815
48.
Dauksher
,
W.
,
2008
, “
A Second-Level SAC Solder-Joint Fatigue-Life Prediction Methodology
,”
IEEE Trans. Device Mater. Reliab.
,
8
(
1
), pp.
168
173
.
49.
Garofalo
,
F.
,
1965
,
Fundamentals of Creep and Creep-Rupture in Metals
,
Macmillan, London
.
50.
Esztergar
,
E. P.
,
1972
, “
Creep-Fatigue Interaction and Cumulative Damage Evaluations for Type 304 Stainless Steel: HOLD-Time Fatigue Test Program and Review of Multiaxial Fatigue
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL-4757
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/04/038/4038440.pdf
51.
Lemaitre, J., and A. Plumtree, 1979, “Application of Damage Concepts to Predict Creep-Fatigue Failures,”
ASME J. Eng. Mater. Technol
.,
101
(3), pp. 284–292.
52.
Syed
,
A.
,
2001
, “
Predicting Solder Joint Reliability for Thermal, Power, and Bend Cycle Within 25% Accuracy
,” 51st Electronic Components and Technology Conference, Orlando, FL, May 29–June 1, pp. 255–263.
53.
Monkman
,
F.
,
1956
, “
An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests
,”
Proc. ASTM
, 56, pp.
91
103
.
54.
Miner
,
M.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
A159
A164
.
55.
Syed
,
A.
,
2004
, “
Accumulated Creep Strain and Energy Density Based Thermal Fatigue Life Prediction Models for SnAgCu Solder Joints
,” 54th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, June 4, pp. 737–746.
56.
Manson
,
S. S.
,
Halford
,
G. R.
, and
Hirschberg
,
M. H.
,
1971
, “
Creep-Fatigue Analysis by Strain-Range Partitioning
,” NASA Lewis Research Center, Cleveland, OH.
57.
Yoshiharu
,
K.
,
Tomoo
,
M.
,
Eisaku
,
H.
, and
Masahisa
,
O.
,
2001
, “
Assessment of Low-Cycle Fatigue Life of Sn-3.5mass%Ag-X (X=Bi or Cu) Alloy by Strain Range Partitioning Approach
,”
J. Electron. Mater.
,
30
(
9
), p. 1184.
58.
Knecht
,
S.
, and
Fox
,
L.
,
1990
, “
Constitutive Relation and Creep-Fatigue Life Model for Eutectic Tin-Lead Solder
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
(
2
), pp.
424
433
.
59.
Stowell
,
E.
,
1966
, “
A Study of the Energy Criterion for Fatigue
,”
Nucl. Eng. Des.
,
3
(
1
), pp.
32
40
.
60.
Bevan
,
M.
, and
Wittig
,
M.
,
1997
, “
Complex Fatigue of Soldered Joints-Comparison of Fatigue Models
,” 47th Electronic Components and Technology Conference (
ECTC
), San Jose, CA, May 18–21, pp. 127–133.
61.
Pan
,
T.-Y.
,
1994
, “
Critical Accumulated Strain Energy (Case) Failure Criterion for Thermal Cycling Fatigue of Solder Joints
,”
ASME J. Electron. Packag.
,
116
(
3
), pp.
163
170
.
62.
Kujawski
,
D.
,
1989
, “
Fatigue Failure Criterion Based on Strain Energy Density
,”
J. Theor. Appl. Mech.
,
27
(
1
), pp.
15
22
.
63.
Joseph
,
O.
, and
Jeries
,
A.-H.
,
2011
, “
A Numerical Investigation of Creep-Fatigue Life Prediction Utilizing Hysteresis Energy as a Damage Parameter
,”
Int. J. Pressure Vessels Piping
,
88
(
4
), pp.
149
157
.
64.
Skelton
,
R. P.
,
1991
, “
Energy Criterion for High Temperature Low Cycle Fatigue Failure
,”
Mater. Sci. Technol.
,
7
(
5
), pp.
427
440
.
65.
Morrow
,
J.
,
1965
,
Cyclic Plastic Strain Energy and Fatigue of Metals
,
ASTM International
,
West Conshohocken, PA
.
66.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
,
1995
, “
Energy Approach to the Fatigue of 60/40 Solder: Part I—Influence of Temperature and Cycle Frequency
,”
ASME J. Electron. Packag.
,
117
(
2
), pp.
130
135
.
67.
Tchankov
,
D.
, and
Vesselinov
,
K.
,
1998
, “
Fatigue Life Prediction Under Random Loading Using Total Hysteresis Energy
,”
Int. J. Pressure Vessels Piping
,
75
(
13
), pp.
955
960
.
68.
Letcher
,
T.
,
Shen
,
M.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy-Based Critical Fatigue Life Prediction Method for AL6061-T6
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
9
), pp.
861
870
.
69.
Jahed
,
H.
, and
Varvanifarahani
,
A.
,
2006
, “
Upper and Lower Fatigue Life Limits Model Using Energy-Based Fatigue Properties
,”
Int. J. Fatigue
,
28
(
5–6
), pp.
467
473
.
70.
Zhang
,
X.
,
Lee
,
S. R.
, and
Pao
,
Y. H.
,
1999
, “
A Damage Evolution Model for Thermal Fatigue Analysis of Solder Joints
,”
ASME J. Electron. Packag.
,
122
(
3
), pp. 200–206.
71.
Fatemi
,
A.
, and
Yang
,
L.
,
1998
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
,
20
(
1
), pp.
9
34
.
72.
Lv
,
Z.
,
Huang
,
H.-Z.
,
Zhu
,
S.-P.
,
Gao
,
H.
, and
Zuo
,
F.
,
2015
, “
A Modified Nonlinear Fatigue Damage Accumulation Model
,”
Int. J. Damage Mech.
,
24
(
2
), pp.
168
181
.
73.
Gatts
,
R.
,
1961
, “
Application of a Cumulative Damage Concept to Fatigue
,”
J. Basic Eng.
,
83
(
4
), pp.
529
534
.
74.
Grover
,
H.
,
1960
,
An Observation Concerning the Cycle Ratio in Cumulative Damage
,
ASTM International
,
West Conshohocken, PA
.
75.
Borgesen
,
P.
,
Hamasha
,
S.
,
Obaidat
,
M.
,
Raghavan
,
V.
,
Dai
,
X.
,
Meilunas
,
M.
, and
Anselm
,
M.
,
2013
, “
Solder Joint Reliability Under Realistic Service Conditions
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1587
1591
.
76.
Hamasha
,
S.
,
Jaradat
,
Y.
,
Qasaimeh
,
A.
,
Obaidat
,
M.
, and
Borgesen
,
P.
,
2014
, “
Assessment of Solder Joint Fatigue Life Under Realistic Service Conditions
,”
J. Electron. Mater.
,
43
(
12
), pp.
4472
4486
.
77.
Corten
,
H.
, and
Dolan
,
T.
,
1956
, “
Cumulative Fatigue Damage
,” International Conference on Fatigue of Metals, New York, Sept. 28–30, pp. 235–242.
78.
Zhu
,
S.-P.
,
Huang
,
H.-Z.
,
Liu
,
Y.
,
He
,
L.-P.
, and
Liao
,
Q.
,
2012
, “
A Practical Method for Determining the Corten-Dolan Exponent and Its Application to Fatigue Life Prediction
,”
Int. J. Turbo Jet-Engines
,
29
(
2
), pp.
79
87
.
79.
Cheng
,
G.
, and
Plumtree
,
A.
,
1998
, “
A Fatigue Damage Accumulation Model Based on Continuum Damage Mechanics and Ductility Exhaustion
,”
Int. J. Fatigue
,
20
(
7
), pp.
495
501
.
80.
Wang
,
M.
,
Fei
,
Q.
, and
Zhang
,
P.
,
2015
, “
A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction
,”
Adv. Mater. Sci. Eng.
,
2016
, p. 2193684.
81.
Makkonen
,
M.
,
2009
, “
Predicting the Total Fatigue Life in Metals
,”
Int. J. Fatigue
,
31
(
7
), pp.
1163
1175
.
82.
Ng
,
H. S.
,
Tee
,
T. Y.
,
Goh
,
K. Y.
,
Luan
,
J.-e.
,
Reinikainen
,
T.
,
Hussa
,
E.
, and
Kujala
,
A.
,
2005
, “
Absolute and Relative Fatigue Life Prediction Methodology for Virtual Qualification and Design Enhancement of Lead-Free BGA
,” 55th Electronic Components and Technology Conference (
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp. 1282–1291.
83.
Gustafsson
,
G.
,
Guven
,
I.
,
Kradinov
,
V.
, and
Madenci
,
E.
,
2000
, “
Finite Element Modeling of BGA Packages for Life Prediction
,” 50th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 21–24, pp. 1059–1063.
84.
Lau
,
J. H.
,
Pan
,
S. H.
, and
Chang
,
C.
,
2002
, “
A New Thermal-Fatigue Life Prediction Model for Wafer Level Chip Scale Package (WLCSP) Solder Joints
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
212
220
.
85.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
J. Basic Eng.
,
85
(
4
), pp.
528
534
.
86.
Forman
,
R. G.
,
Kearney
,
V. E.
, and
Engle
,
R. M.
,
1967
, “
Numerical Analysis of Crack Propagation in Cyclic Loaded Structures
,”
J. Basic Eng.
,
89
(
3
), pp.
459
463
.
87.
Tee
,
T. Y.
,
Ng
,
H. S.
,
Yap
,
D.
,
Baraton
,
X.
, and
Zhong
,
Z.
,
2003
, “
Board Level Solder Joint Reliability Modeling and Testing of TFBGA Packages for Telecommunication Applications
,”
Microelectron. Reliab.
,
43
(
7
), pp.
1117
1123
.
88.
Luan
,
J.-e.
,
Tee
,
T. Y.
,
Goh
,
K. Y.
, and
Ng
,
H. S.
,
2006
, “
Drop Impact Life Prediction Model for Lead-Free BGA Packages and Modules
,” Sixth International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems (
Euro-SimE
), Berlin, Apr. 18–20, pp. 559–565.
89.
Hwang
,
W.
, and
Han
,
K.
,
1986
, “
Fatigue of Composites—Fatigue Modulus Concept and Life Prediction
,”
J. Compos. Mater.
,
20
(
2
), pp.
154
165
.
90.
Nam, S. W., and
Soo
,
W.
,
2002
, “
Assessment of Damage and Life Prediction of Austenitic Stainless Steel Under High Temperature Creep–Fatigue Interaction Condition
,”
Mater. Sci. Eng.
,
322
(1–2), pp. 64–72.
91.
Wong
,
E.
,
Driel
,
W.
,
Dasgupta
,
A.
, and
Pecht
,
M.
,
2016
, “
Creep Fatigue Models of Solder Joints: A Critical Review
,”
Microelectron. Reliab.
,
59
, pp.
1
12
.
92.
Schütz
,
W.
,
1996
, “
A History of Fatigue
,”
Eng. Fract. Mech.
,
54
(
2
), pp.
263
300
.
93.
Cui
,
W.
,
2002
, “
A State-of-the-Art Review on Fatigue Life Prediction Methods for Metal Structures
,”
J. Mar. Sci. Technol.
,
7
(
1
), pp.
43
56
.
You do not currently have access to this content.