Foldable smartphones are expected to be widely commercialized in the near future. Thermal ground plane (TGP), known as vapor chamber or two-dimensional flat heat pipe, is a promising solution for the thermal management of foldable smartphones. There are two approaches to designing a TGP for foldable smartphones. One approach uses two TGPs connected by a graphite bridge and the other approach uses a single, large, and foldable TGP. In this study, different thermal management solutions are simulated for a representative foldable smartphone with screen dimensions of 144 × 138.3 mm2 (twice the screen of iPhone 6 s with a 10 mm gap). In addition, the simulation includes two heat sources representing a main processor with dimensions of 14.45 × 14.41 mm2 and power of 3.3 W (A9 processor in iPhone 6S) and a broadband processor with dimensions of 8.26 × 9.02 mm2 and power of 2.5 W (Qualcomm broadband processor). For the simulation, a finite element method (FEM) model is calibrated and verified by steady-state experiments of two different TGPs. The calibrated model is then used to study three different cases: a graphite heat spreader, two TGPs with a graphite hinge, and a single, large, and foldable TGP. In the fully unfolded configuration, using a graphite heat spreader, the temperature difference across the spreader's surface is about 17 °C. For the design using two TGPs connected by a graphite bridge, the temperature difference is about 7.2 °C. Finally, for the design using a single large TGP with a joint region, the temperature difference is only 1–2 °C. These results suggest that a single foldable TGP or a configuration with two TGPs outperform the graphite sheet solution for the thermal management of foldable smartphones.

References

References
1.
Seo
,
K.
, and
Ryu
,
S.
,
2018
, “
International Patent Application
,” Patent No. DM097 157.
2.
Seo
,
K.
,
Ryu
,
S.
,
Hyun
,
J.
, and
Lee
,
J.
,
2017
, “
Tablet Computer
,” U.S. Patent No. US D788774 S1.
3.
Zhang
,
Z.
,
Yin
,
V. H.
,
Liu
,
C. Y.
,
Drzaic
,
P. S.
,
Bae
,
S.
,
Tung
,
C. H.
,
Vakhshouri
,
K.
,
Kang
,
S.
, and
Zhong
,
J. Z.
,
2017
, “
Electronic Devices With Flexible Displays
,” U. S. Patent No.
US 2017/0336831 A1
.
4.
Kim
,
C.
,
2017
, “
Mobile Device With Touch Screens and Method of Controlling the Same
,” U. S. Patent No.
US 2017/0357473 A1
.
5.
Kauhaniemi
,
I.
,
Matta
,
E.
,
Ropo
,
J.
,
Alonso
,
V. C.
, and
Gheorghiu
,
C.
,
2017
, “
Bendable Device With Display in Movable Connection With Body
,” Microsoft Technology Licensing, Redmond, WA, U. S. Patent No.
US 9,778,772 B2
.
6.
Harmon
,
R. W.
,
Cavallaro
,
A. R.
, and
Wojack
,
J. P.
,
2018
, “
Three Part Foldable Housing Supporting Multiple Use Positions in an Electronic Device
,” U. S. Patent No.
US 2018/0077806
.
7.
Wright
,
R. B.
,
Christophersen
,
J. P.
,
Motloch
,
C. G.
,
Belt
,
J. R.
,
Ho
,
C. D.
,
Battaglia
,
V. S.
,
Barnes
,
J. A.
,
Duong
,
T. Q.
, and
Sutula
,
R. A.
,
2003
, “
Power Fade and Capacity Fade Resulting From Cycle-Life Testing of Advanced Technology Development Program Lithium-Ion Batteries
,”
J. Power Sources
,
119
, pp.
865
869
.
8.
National Research Council
,
2013
, Assessment of Advanced Solid-State Lighting,
The National Academies Press
, Washington, DC.
9.
Kawabata
,
T.
, and
Ohno
,
Y.
,
2013
, “
Optical Measurements of OLED Panels for Lighting Applications
,”
J. Mod. Opt.
,
60
(
14
), pp.
1176
1186
.
10.
Chen
,
H. T.
,
Choy
,
W. C. H.
, and
Hui
,
S. Y.
,
2016
, “
Characterization, Modeling, and Analysis of Organic Light-Emitting Diodes With Different Structures
,”
IEEE Trans. Power Electron.
,
31
(
1
), pp.
581
592
.
11.
Gärditz
,
C.
,
Winnacker
,
A.
,
Schindler
,
F.
, And., and
Paetzold
,
R.
,
2007
, “
Impact of Joule Heating on the Brightness Homogeneity of Organic Light Emitting Devices
,”
Appl. Phys. Lett.
,
90
(
10
), p.
103506
.
12.
Shao
,
L.
,
Raghavan
,
A.
,
Kim
,
G. H.
,
Emurian
,
L.
,
Rosen
,
J.
,
Papaefthymiou
,
M. C.
,
Thomas
,
F.
,
Wenisch
,
T. F.
,
Martin
,
M. M. K.
, and
Pipe
,
K. P.
,
2016
, “
Figure-of-Merit for Phase-Change Materials Used in Thermal Management
,”
Int. J. Heat Mass Transfer
,
101
, pp.
764
771
.
13.
Merla
,
Y.
,
Wu
,
B.
,
Yufit
,
V.
,
Brandon
,
N. P.
,
Martinez-Botas
,
R. F.
, and
Offer
,
G. J.
,
2016
, ” “
Extending Battery Life: A Low-Cost Practical Diagnostic Technique for Lithium-Ion Batteries
,”
J. Power Sources
,
331
, pp.
224
231
.
14.
Ganatra
,
Y.
,
Ruiz
,
J.
,
Howarter
,
J. A.
, and
Marconnet
,
A.
,
2018
, “
Experimental Investigation of Phase Change Materials for Thermal Management of Handheld Devices
,”
Int. J. Therm. Sci.
,
129
, pp.
358
364
.
15.
Yadavalli
,
Y.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2015
, “
Performance Governing Transport Mechanisms for Heat Pipes at Ultrathin Form Factors
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
5
(
11
), pp.
1618
1627
.
16.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J. A.
, and
Gektin
,
V.
,
2017
, “
Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
8
), pp. 1191–1205.
17.
Patankar
,
G.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Validated Time-Stepping Analytical Model for 3D Transient Vapor Chamber Transport
,”
Int. J. Heat Mass Transfer
,
119
, pp.
867
879
.
18.
Bulut
,
M.
,
Kandlikar
,
S. G.
, and
Sozbir
,
N.
,
2018
, “
A Review of Vapor Chambers
,”
Heat Transfer Eng.
(epub).
19.
Xu
,
S.
,
Lewis
,
R. J.
,
Liew
,
L. A.
,
Lee
,
Y. C.
, and
Yang
,
R.
,
2016
, “
Development of Ultra-Thin Thermal Ground Planes by Using Stainless-Steel Mesh as Wicking Structure
,”
J. Microelectromech. Syst.
,
25
(
5
), pp.
842
844
.
20.
Di Marco
,
P.
,
Filipeschi
,
S.
,
Franco
,
A.
, and
Jafari
,
D.
,
2014
, “
Theoretical Analysis of Screened Heat Pipes for Medium and High Temperature Solar Applications
,”
J. Phys.: Conf. Ser.
,
547
, p.
012010
.
21.
Armour
,
J. C.
, and
Cannon
,
J. N.
,
1968
, “
Fluid Flow Through Woven Screens
,”
AIChE J.
,
14
(
3
), pp.
415
420
.
22.
Chang
,
W.
,
1990
, “
Porosity and Effective Thermal Conductivity of Wire Screens
,”
ASME. J. Heat Transfer.
,
112
(
1
), pp.
5
9
.
23.
White
,
F. M.
, 2011, Fluid Mechanics, 7th ed., McGraw-Hill Education, New York.
24.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,” Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
25.
Lewis
,
R.
,
Xu
,
S.
,
Liew
,
L. A.
,
Coolidge
,
C.
,
Yang
,
R.
, and
Lee
,
Y. C.
,
2015
, “
Thin Flexible Thermal Ground Planes: Fabrication and Scaling Characterization
,”
J. Microelectromech. Syst.
,
24
(
6
), pp.
2040
2048
.
26.
Mizuta
,
K.
,
Fukunaga
,
R.
,
Fukuda
,
K.
,
Nishino
,
T.
,
Goshima
,
T.
,
Nii
,
S.
, and
Asano
,
T.
,
2019
, “
Quasi One-Dimensional Approach to Evaluate Temperature Dependent Anisotropic Thermal Conductivity of a Flat Laminate Vapor Chamber
,”
Appl. Therm. Eng.
,
146
, pp.
843
853
.
27.
Arctic, 2019, “Arctix MX-4 Thermal Compound” Arctic, Braunschweig, Germany, accessed Jan. 16, 2019, https://cdn-reichelt.de/documents/datenblatt/E910/ARCTIC_MX-4-20_DS.pdf
28.
Seo
,
H. S.
,
Park
,
K. W.
,
Lee
,
G. H.
,
Jung
,
J. H.
, and
Cho
,
S. Y.
,
2017
, “
Foldable Device
,” U.S. Patent No. US 9,798,359 B2.
29.
NeoGraf Solutions, 2017, “Neograf Spreadershield Heat Spreader Technical Data Sheet 321,” NeoGraf Solutions, Lakewood, OH, accessed Jan. 16, 2019, https://neograf.com/wp-content/uploads/NGS_TDS321-SpreadershieldHeatSpreaders.pdf
30.
DeFigueiredo
,
B. P.
,
Zimmerman
,
T. K.
,
Russell
,
B. D.
, and
Howell
,
L. L.
,
2018
, “
Regional Stiffness Reduction Using Lamina Emergent Torsional Joints for Flexible Printed Circuit Board Design
,”
ASME. J. Electron. Packag.
,
140
(
4
), p.
041001
.
31.
Kim
,
T.
,
Chae
,
G.
,
Park
,
J.
,
Myung
,
N.
,
Lee
,
S.
,
Shin
,
S.
, and
Kwak
,
T.
,
2018
, “
Foldable Display Device
,” U.S. Patent No. US 9,983,424, B2.
32.
Cai
,
S. Q.
,
Chen
,
Y. C.
, and
Bhunia
,
A.
,
2016
, “
Design, Development and Tests of a Compact Thermofluid System
,”
Appl. Therm. Eng.
,
102
, pp.
1320
1327
.
33.
Cai
,
S. Q.
,
Chen
,
B.
, and
Tsai
,
C.
,
2012
, “
Design, Development and Tests of High Performance Silicon Vapor Chamber
,”
J. Micromech. Microeng.
,
22
(
3
), p.
35009
.
34.
Velardo
,
J.
,
Singh
,
R.
,
Date
,
A.
, and
Date
,
A.
,
2017
, “
An Investigation Into the Effective Thermal Conductivity of Vapour Chamber Heat Spreaders
,”
Energy Procedia
,
110
, pp.
256
261
.
35.
Moheimani
,
R.
, and
Hasansade
,
M.
,
2018
, “
A Closed-Form Model for Estimating the Effective Thermal Conductivities of Carbon Nanotube–Polymer Nanocomposites
,”
Proc. Inst. Mech. Eng., Part C
(epub).
You do not currently have access to this content.