We provide an algorithm to optimize the geometry of the fins in an array of longitudinal-fin heat sinks (HSs) in, e.g., a blade server, which is a prohibitively long task using computational fluid dynamics (CFD). First, banks of CFD simulations are run to precompute dimensionless thermal resistances (conjugate Nusselt numbers) as a function of dimensionless HS geometry, thermophysical properties, and external parameters. These precomputed CFD results are embedded in flow network models (FNMs) in the form of look-up tables. This preserves much of the accuracy of CFD and the speed of FNM. The FNMs are, in turn, embedded in a multivariable optimization algorithm (MVO). Our hybrid numerical algorithm is provided, and we exercise it for an example problem.

References

References
1.
Kraus
,
A. D.
, and
Bar-Cohen
,
A.
,
1983
,
Thermal Analysis and Control of Electronic Equipment
,
Hemisphere Publishing
,
Washington, DC
, p.
633
.
2.
Holahan
,
M. F.
,
Kang
,
S. S.
, and
Bar-Cohen
,
A.
,
1996
, “
A Flowstream Based Analytical Model for Design of Parallel Plate Heatsinks
,”
Am. Soc. Mech. Eng., Heat Transfer Div.
,
329
(
7
), pp.
63
71
.https://www.researchgate.net/profile/Sukhvinder_Kang/publication/238160220_A_Flowstream_Based_Analytical_Model_for_Design_of_Parallel_Plate_Heatsinks/links/59b58ecc0f7e9b3743551c31/A-Flowstream-Based-Analytical-Model-for-Design-of-Parallel-Plate-Heatsinks.pdf
3.
Sparrow
,
E.
,
Baliga
,
B.
, and
Patankar
,
S.
,
1978
, “
Forced Convection Heat Transfer From a Shrouded Fin Array With and Without Tip Clearance
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
572
579
.
4.
Karamanis
,
G.
, and
Hodes
,
M.
,
2016
, “
Longitudinal-Fin Heat Sink Optimization Capturing Conjugate Effects Under Fully Developed Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
4
), p.
041011
.
5.
Karamanis
,
G.
,
2018
, “
Nusselt Numbers for Superhydrophobic Microchannels and Shrouded Longitudinal-Fin Heat Sinks
,” Ph.D. thesis, Tufts University, Medford, MA.
6.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
, Boca Raton, FL.
7.
ANSYS
,
2013
,
ANSYS Fluent Theory Guide
,
ANSYS
, Canonsburg, PA.
8.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, Vol.
206
,
Springer
, New York.
9.
Innovative Research, 2007,
MacroFlow User Manual
, Innovative Research, Inc.,
Minneapolis, MN
.
10.
Ellsworth
,
M. J.
,
2014
, “
Flow Network Analysis of the IBM Power 775 Supercomputer Water Cooling System
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
715
722
.
11.
Idelchik
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance
,
Hemisphere Publishing
,
Washington, DC
, p.
662
.
12.
Blevins
,
R. D.
,
1984
,
Applied Fluid Dynamics Handbook
,
Van Nostrand Reinhold Co
,
New York
, p.
568
.
13.
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York
.
14.
Gill
,
P.
,
Murray
,
W.
, and
Wright
,
M.
,
1981
,
Practical Optimization
,
Academic Press
, London.
15.
Bertsekas
,
D. P.
,
1999
,
Nonlinear Programming
,
Athena Scientific Belmont
, Belmont, MA.
16.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.
17.
MathWorks
,
2016
,
Optimization Toolbox User's Guide
,
MathWorks
, Natick, MA.
18.
ANSYS,
2013
,
ANSYS Icepak Tutorials
,
ANSYS
, Canonsburg, PA.
You do not currently have access to this content.