GaN-based high-power wide-bandgap semiconductor electronics and photonics have been considered as promising candidates to replace conventional devices for automotive applications due to high energy conversion efficiency, ruggedness, and superior transient performance. However, performance and reliability are detrimentally impacted by significant heat generation in the device active area. Therefore, thermal management plays a critical role in the development of GaN-based high-power electronic and photonic devices. This paper presents a comprehensive review of the thermal management strategies for GaN-based lateral power/RF transistors and light-emitting diodes (LEDs) reported by researchers in both industry and academia. The review is divided into three parts: (1) a survey of thermal metrology techniques, including infrared thermography, Raman thermometry, and thermoreflectance thermal imaging, that have been applied to study GaN electronics and photonics; (2) practical thermal management solutions for GaN power electronics; and (3) packaging techniques and cooling systems for GaN LEDs used in automotive lighting applications.

References

1.
Boutros
,
K. S.
,
Chu
,
R.
, and
Hughes
,
B.
, 2012, “
GaN Power Electronics for Automotive Application
,”
IEEE Energytech
, Cleveland, OH, May 29–31, pp.
1
4
.
2.
Kachi
,
T.
,
2014
, “
Recent Progress of GaN Power Devices for Automotive Applications
,”
Jpn. J. Appl. Phys.
,
53
(
10
), p.
100210
.
3.
Kachi
,
T.
,
Kikuta
,
D.
, and
Uesugi
,
T.
, 2012, “
GaN Power Device and Reliability for Automotive Applications
,”
IEEE International Reliability Physics Symposium
(
IRPS
), Anaheim, CA, Apr. 15–19, pp.
3D. 1.1
3D. 1.4
.
4.
Kang
,
B.
,
Yong
,
B.
, and
Park
,
K.
,
2010
, “
Performance Evaluations of LED Headlamps
,”
Int. J. Automot. Technol.
,
11
(
5
), pp.
737
742
.
5.
Ikeda
,
N.
,
Niiyama
,
Y.
,
Kambayashi
,
H.
,
Sato
,
Y.
,
Nomura
,
T.
,
Kato
,
S.
, and
Yoshida
,
S.
,
2010
, “
GaN Power Transistors on Si Substrates for Switching Applications
,”
Proc. IEEE
,
98
(
7
), pp.
1151
1161
.
6.
Oh
,
S. K.
,
Jang
,
T.
,
Jo
,
Y. J.
,
Ko
,
H.-Y.
, and
Kwak
,
J. S.
,
2016
, “
Improved Package Reliability of AlGaN/GaN HFETs on 150 mm Si Substrates by SiN x/Polyimide Dual Passivation Layers
,”
Surf. Coat. Technol.
,
307
, pp.
1124
1128
.
7.
Ikeda
,
N.
,
Kato
,
K.
,
Kondoh
,
K.
,
Kambayashi
,
H.
,
Li
,
J.
, and
Yoshida
,
S.
,
2007
, “
Over 55 A, 800 V High Power AlGaN/GaN HFETs for Power Switching Application
,”
Phys. Status Solidi (a)
,
204
(
6
), pp.
2028
2031
.
8.
Kambayashi
,
H.
,
Satoh
,
Y.
,
Ootomo
,
S.
,
Kokawa
,
T.
,
Nomura
,
T.
,
Kato
,
S.
, and
Chow
,
T.-S. P.
,
2010
, “
Over 100A Operation Normally-Off AlGaN/GaN Hybrid MOS-HFET on Si Substrate With High-Breakdown Voltage
,”
Solid-State Electron.
,
54
(
6
), pp.
660
664
.
9.
Pohlmann
,
W.
,
Vieregge
,
T.
, and
Rode
,
M.
, 2007, “
High Performance LED Lamps for the Automobile: Needs and Opportunities
,”
Proc. SPIE
,
6797
, p.
67970D
.
10.
Donahoe
,
D. N.
,
2009
, “
Thermal Aspects of LED Automotive Headlights
,”
Vehicle Power and Propulsion Conference
(
VPPC'09
), Dearborn, MI, Sept. 7–10, pp.
1193
1199
.
11.
Vollmer
,
M.
, and
Möllmann
,
K.-P.
,
2010
,
Infrared Thermal Imaging: Fundamentals, Research and Applications
,
Wiley-VCH Verlag
,
Weinheim, Germany
.
12.
Hopper
,
R.
,
2010
, “
Accurate Temperature Measurements on Semiconductor Devices
,” Ph.D. thesis, De Montfort University, Leicester, UK.
13.
Meola
,
C.
, and
Carlomagno
,
G. M.
,
2004
, “
Recent Advances in the Use of Infrared Thermography
,”
Meas. Sci. Technol.
,
15
(
9
), p.
R27
.
14.
Webb
,
P.
,
1991
, “
Thermal Imaging of Electronic Devices With Low Surface Emissivity
,”
IEE Proc. G (Circuits, Devices Syst.)
,
138
(
3
), pp.
390
400
.
15.
Oxley
,
C.
,
Hopper
,
R.
,
Hill
,
G.
, and
Evans
,
G.
,
2010
, “
Improved Infrared (IR) Microscope Measurements and Theory for the Micro-Electronics Industry
,”
Solid-State Electron.
,
54
(
1
), pp.
63
66
.
16.
Hopper
,
R. H.
,
Oxley
,
C. H.
,
Pomeroy
,
J. W.
, and
Kuball
,
M.
,
2008
, “
Micro-Raman/Infrared Temperature Monitoring of Gunn Diodes
,”
IEEE Trans. Electron Devices
,
55
(
4
), pp.
1090
1093
.
17.
Choi
,
S.
,
Peake
,
G. M.
,
Keeler
,
G. A.
,
Geib
,
K. M.
,
Briggs
,
R. D.
,
Beechem
,
T. E.
,
Shaffer
,
R. A.
,
Clevenger
,
J.
,
Patrizi
,
G. A.
, and
Klem
,
J. F.
,
2016
, “
Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
6
(
5
), pp.
740
748
.
18.
Axell
,
R. G.
,
Hopper
,
R. H.
,
Jarritt
,
P. H.
, and
Oxley
,
C. H.
,
2011
, “
A Novel Method for More Accurately Mapping the Surface Temperature of Ultrasonic Transducers
,”
Ultrasound Med. Biol.
,
37
(
10
), pp.
1659
1666
.
19.
Jimenez
,
J.
, and
Tomm
,
J. W.
,
2016
,
Spectroscopic Analysis of Optoelectronic Semiconductors
,
Springer
, Cham,
Switzerland
.
20.
Beechem
, III
,
T. E.
,
2008
, “
Metrology of GaN Electronics Using Micro-Raman Spectroscopy
,”
Ph.D. dissertation
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/bitstream/handle/1853/26544/beechem_thomas_e_200812_phd.pdf?sequence=1&isAllowed=y
21.
Ferraro
,
J. R.
,
2003
,
Introductory Raman Spectroscopy
,
Academic Press
, San Diego, CA.
22.
Choi
,
S.
,
2013
, “
Stress Metrology and Thermometry of AlGaN/GaN HEMTs Using Optical Methods
,” Georgia Institute of Technology, Atlanta, GA.
23.
Beechem
,
T.
,
Graham
,
S.
,
Kearney
,
S. P.
,
Phinney
,
L. M.
, and
Serrano
,
J. R.
,
2007
, “
Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices Using micro-Raman Spectroscopy
,”
Rev. Sci. Instrum.
,
78
(
6
), p.
061301
.
24.
Beechem
,
T.
,
Christensen
,
A.
,
Graham
,
S.
, and
Green
,
D.
,
2008
, “
Micro-Raman Thermometry in the Presence of Complex Stresses in GaN Devices
,”
J. Appl. Phys.
,
103
(
12
), p.
124501
.
25.
Choi
,
S.
,
Heller
,
E. R.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Thermometry of AlGaN/GaN HEMTs Using Multispectral Raman Features
,”
IEEE Trans. Electron Devices
,
60
(
6
), pp.
1898
1904
.
26.
Kuball
,
M.
,
Hayes
,
J.
,
Uren
,
M.
,
Martin
,
I.
,
Birbeck
,
J.
,
Balmer
,
R.
, and
Hughes
,
B.
,
2002
, “
Measurement of Temperature in Active High-Power AlGaN/GaN HFETs Using Raman Spectroscopy
,”
IEEE Electron Device Lett.
,
23
(
1
), pp.
7
9
.
27.
Kuball
,
M.
, and
Pomeroy
,
J. W.
,
2016
, “
A Review of Raman Thermography for Electronic and Opto-Electronic Device Measurement With Submicron Spatial and Nanosecond Temporal Resolution
,”
IEEE Trans. Device Mater. Reliab.
,
16
(
4
), pp.
667
684
.
28.
Kuball
,
M.
,
2001
, “
Raman Spectroscopy of GaN, AlGaN and AlN for Process and Growth Monitoring/Control
,”
Surf. Interface Anal.
,
31
(
10
), pp.
987
999
.
29.
Serrano
,
J. R.
, and
Kearney
,
S. P.
,
2008
, “
Time-Resolved micro-Raman Thermometry for Microsystems in Motion
,”
ASME J. Heat Transfer
,
130
(
12
), p.
122401
.
30.
Beechem
,
T.
,
Christensen
,
A.
,
Green
,
D.
, and
Graham
,
S.
,
2009
, “
Assessment of Stress Contributions in GaN High Electron Mobility Transistors of Differing Substrates Using Raman Spectroscopy
,”
J. Appl. Phys.
,
106
(
11
), p.
114509
.
31.
Batten
,
T.
,
Pomeroy
,
J.
,
Uren
,
M.
,
Martin
,
T.
, and
Kuball
,
M.
,
2009
, “
Simultaneous Measurement of Temperature and Thermal Stress in AlGaN/GaN High Electron Mobility Transistors Using Raman Scattering Spectroscopy
,”
J. Appl. Phys.
,
106
(
9
), p.
094509
.
32.
Choi
,
S.
,
Heller
,
E.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Analysis of the Residual Stress Distribution in AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
113
(
9
), p.
093510
.
33.
Bagnall
,
K. R.
,
Dreyer
,
C. E.
,
Vanderbilt
,
D.
, and
Wang
,
E. N.
,
2016
, “
Electric Field Dependence of Optical Phonon Frequencies in Wurtzite GaN Observed in GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
120
(
15
), p.
155104
.
34.
Bagnall
,
K. R.
, and
Wang
,
E. N.
,
2016
, “
Contributed Review: Experimental Characterization of Inverse Piezoelectric Strain in GaN HEMTs Via micro-Raman Spectroscopy
,”
Rev. Sci. Instrum.
,
87
(
6
), p.
061501
.
35.
Kuball
,
M.
,
Riedel
,
G.
,
Pomeroy
,
J.
,
Sarua
,
A.
,
Uren
,
M.
,
Martin
,
T.
,
Hilton
,
K.
,
Maclean
,
J.
, and
Wallis
,
D.
,
2007
, “
Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Spectroscopy
,”
IEEE Electron Device Lett.
,
28
(
2
), pp.
86
89
.
36.
Lancry
,
O.
,
Pichonat
,
E.
,
Réhault
,
J.
,
Moreau
,
M.
,
Aubry
,
R.
, and
Gaquière
,
C.
,
2010
, “
Development of Time-Resolved UV Micro-Raman Spectroscopy to Measure Temperature in AlGaN/GaN HEMTs
,”
Solid-State Electron.
,
54
(
11
), pp.
1434
1437
.
37.
Bagnall
,
K. R.
,
Saadat
,
O. I.
,
Joglekar
,
S.
,
Palacios
,
T.
, and
Wang
,
E. N.
,
2017
, “
Experimental Characterization of the Thermal Time Constants of GaN HEMTs Via Micro-Raman Thermometry
,”
IEEE Trans. Electron Devices
,
64
(
5
), pp.
2121
2128
.
38.
Hapke
,
B.
,
2012
,
Theory of Reflectance and Emittance Spectroscopy
,
Cambridge University Press
,
Cambridge, UK
.
39.
Pavlidis
,
G.
,
Kendig
,
E.
,
Heller
,
E. R.
, and
Graham
,
S.
,
2018
, “
Transient Thermal Characterization of AlGaN/GaN HEMTs Under Pulsed Biasing
,”
IEEE Trans. Electron Devices
,
65
(
5
), pp.
1753
1758
.
40.
Christofferson
,
J.
,
Vashaee
,
D.
,
Shakouri
,
A.
,
Melese
,
P.
,
Fan
,
X.
,
Zeng
,
G.
,
Labounty
,
C.
,
Bowers
,
J. E.
, and
Croke
,
E. T.
,
2001
, “
Thermoreflectance Imaging of Superlattice Micro Refrigerators
,”
Seventeenth Annual IEEE Symposium on Semiconductor Thermal Measurement and Management
, San Jose, CA, Mar. 22, pp.
58
62
.
41.
Ju
,
S.
,
Kading
,
O.
,
Leung
,
Y.
,
Wong
,
S.
, and
Goodson
,
K.
,
1997
, “
Short-Timescale Thermal Mapping of Semiconductor Devices
,”
IEEE Electron Device Lett.
,
18
(
5
), pp.
169
171
.
42.
Grauby
,
S.
,
Salhi
,
A.
,
Rampnoux
,
J.-M.
,
Michel
,
H.
,
Claeys
,
W.
, and
Dilhaire
,
S.
,
2007
, “
Laser Scanning Thermoreflectance Imaging System Using Galvanometric Mirrors for Temperature Measurements of Microelectronic Devices
,”
Rev. Sci. Instrum.
,
78
(
7
), p.
074902
.
43.
Christofferson
,
J.
, and
Shakouri
,
A.
,
2005
, “
Thermoreflectance Based Thermal Microscope
,”
Rev. Sci. Instrum.
,
76
(
2
), p.
024903
.
44.
Grauby
,
S.
,
Forget
,
B.
,
Holé
,
S.
, and
Fournier
,
D.
,
1999
, “
High Resolution Photothermal Imaging of High Frequency Phenomena Using a Visible Charge Coupled Device Camera Associated With a Multichannel Lock-in Scheme
,”
Rev. Sci. Instrum.
,
70
(
9
), pp.
3603
3608
.
45.
Tessier
,
G.
,
Holé
,
S.
, and
Fournier
,
D.
,
2001
, “
Quantitative Thermal Imaging by Synchronous Thermoreflectance With Optimized Illumination Wavelengths
,”
Appl. Phys. Lett.
,
78
(
16
), pp.
2267
2269
.
46.
Luerssen
,
D.
,
Hudgings
,
J. A.
,
Mayer
,
P. M.
, and
Ram
,
R. J.
,
2005
, “
Nanoscale Thermoreflectance With 10mK Temperature Resolution Using Stochastic Resonance
,”
IEEE
Twenty First Annual Semiconductor Thermal Measurement and Management Symposium,
San Jose, CA, Mar. 15–17, pp.
253
258
.
47.
Farzaneh
,
M.
,
Maize
,
K.
,
Lüerßen
,
D.
,
Summers
,
J.
,
Mayer
,
P.
,
Raad
,
P.
,
Pipe
,
K.
,
Shakouri
,
A.
,
Ram
,
R.
, and
Hudgings
,
J. A.
,
2009
, “
CCD-Based Thermoreflectance Microscopy: Principles and Applications
,”
J. Phys. D: Appl. Phys.
,
42
(
14
), p.
143001
.
48.
Christofferson
,
J.
,
Maize
,
K.
,
Ezzahri
,
Y.
,
Shabani
,
J.
,
Wang
,
X.
, and
Shakouri
,
A.
,
2008
, “
Microscale and Nanoscale Thermal Characterization Techniques
,”
ASME J. Electron. Packag.
,
130
(
4
), p.
041101
.
49.
Maize
,
K.
,
Heller
,
E.
,
Dorsey
,
D.
, and
Shakouri
,
A.
,
2012
, “
Thermoreflectance CCD Imaging of Self Heating in AlGaN/GaN High Electron Mobility Power Transistors at High Drain Voltage
,”
28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp.
173
181
.
50.
Maize
,
K.
,
Pavlidis
,
G.
,
Heller
,
E.
,
Yates
,
L.
,
Kendig
,
D.
,
Graham
,
S.
, and
Shakouri
,
A.
, 2014, “
High Resolution Thermal Characterization and Simulation of Power AlGaN/GaN HEMTs Using Micro-Raman Thermography and 800 Picosecond Transient Thermoreflectance Imaging
,”
Compound Semiconductor Integrated Circuit Symposium
(
CSICS
), La Jolla, CA, Oct. 19–22, pp.
1
8
.
51.
Matei
,
C.
,
Aaen
,
P.
, and
Kending
,
D.
,
2017
, “
High-Resolution Thermoreflectance Imaging of GaN Power Microwave Transistors
,”
ARMMS RF & Microwave Society
, Wyboston Lakes, Wyboston, UK, Nov. 13–17.http://epubs.surrey.ac.uk/845637/1/High%20Resolution%20thermoreflectace%20measurements%20of%20GaN%20transistor.pdf
52.
Vermeersch
,
B.
,
Christofferson
,
J.
,
Maize
,
K.
,
Shakouri
,
A.
, and
De Mey
,
G.
,
2010
, “
Time and Frequency Domain CCD-Based Thermoreflectance Techniques for High-Resolution Transient Thermal Imaging
,”
26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), Santa Clara, CA, Feb. 21–25, pp.
228
234
.
53.
Maize
,
K.
, and
Shakouri
,
A.
,
2008
, “
Transient Thermal Imaging Using Thermoreflectance
,”
24th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 16–20, pp.
55
58
.
54.
Kendig
,
D.
,
Tay
,
A.
, and
Shakouri
,
A.
,
2016
, “
Thermal Analysis of Advanced Microelectronic Devices Using Thermoreflectance Thermography
,”
22nd International Workshop on Thermal Investigations of ICs and Systems
(
THERMINIC
), Budapest, Hungary, Sept. 21–23, pp.
115
120
.
55.
Oh
,
S. K.
,
Cho
,
M. U.
,
Dallas
,
J.
,
Jang
,
T.
,
Lee
,
D. G.
,
Pouladi
,
S.
,
Chen
,
J.
,
Wang
,
W.
,
Shervin
,
S.
, and
Kim
,
H.
,
2017
, “
High-Power Flexible AlGaN/GaN Heterostructure Field-Effect Transistors With Suppression of Negative Differential Conductance
,”
Appl. Phys. Lett.
,
111
(
13
), p.
133502
.
56.
Park
,
J.
,
Shin
,
M. W.
, and
Lee
,
C. C.
,
2004
, “
Thermal Modeling and Measurement of AlGaN-GaN HFETs Built on Sapphire and SiC Substrates
,”
IEEE Trans. Electron Devices
,
51
(
11
), pp.
1753
1759
.
57.
Asnin
,
V.
,
Pollak
,
F. H.
,
Ramer
,
J.
,
Schurman
,
M.
, and
Ferguson
,
I.
,
1999
, “
High Spatial Resolution Thermal Conductivity of Lateral Epitaxial Overgrown GaN/Sapphire (0001) Using a Scanning Thermal Microscope
,”
Appl. Phys. Lett.
,
75
(
9
), pp.
1240
1242
.
58.
Kuzmik
,
J.
,
Javorka
,
R.
,
Alam
,
A.
,
Marso
,
M.
,
Heuken
,
M.
, and
Kordos
,
P.
,
2002
, “
Determination of Channel Temperature in AlGaN/GaN HEMTs Grown on Sapphire and Silicon Substrates Using DC Characterization Method
,”
IEEE Trans. Electron Devices
,
49
(
8
), pp.
1496
1498
.
59.
Wei
,
R.
,
Song
,
S.
,
Yang
,
K.
,
Cui
,
Y.
,
Peng
,
Y.
,
Chen
,
X.
,
Hu
,
X.
, and
Xu
,
X.
,
2013
, “
Thermal Conductivity of 4H-SiC Single Crystals
,”
J. Appl. Phys.
,
113
(
5
), p.
053503
.
60.
Gaska
,
R.
,
Osinsky
,
A.
,
Yang
,
J.
, and
Shur
,
M. S.
,
1998
, “
Self-Heating in High-Power AlGaN-GaN HFETs
,”
IEEE Electron Device Lett.
,
19
(
3
), pp.
89
91
.
61.
Chumbes
,
E. M.
,
Schremer
,
A.
,
Smart
,
J. A.
,
Wang
,
Y.
,
MacDonald
,
N. C.
,
Hogue
,
D.
,
Komiak
,
J. J.
,
Lichwalla
,
S. J.
,
Leoni
,
R. E.
, and
Shealy
,
J. R.
,
2001
, “
AlGaN/GaN High Electron Mobility Transistors on Si (111) Substrates
,”
IEEE Trans. Electron Devices
,
48
(
3
), pp.
420
426
.
62.
Tan
,
W.
,
Uren
,
M.
,
Fry
,
P.
,
Houston
,
P.
,
Balmer
,
R.
, and
Martin
,
T.
,
2006
, “
High Temperature Performance of AlGaN/GaN HEMTs on Si Substrates
,”
Solid-State Electron.
,
50
(
3
), pp.
511
513
.
63.
Kuzmík
,
J.
,
Bychikhin
,
S.
,
Neuburger
,
M.
,
Dadgar
,
A.
,
Krost
,
A.
,
Kohn
,
E.
, and
Pogany
,
D.
,
2005
, “
Transient Thermal Characterization of AlGaN/GaN HEMTs Grown on Silicon
,”
IEEE Trans. Electron Devices
,
52
(
8
), pp.
1698
1705
.
64.
Sarua
,
A.
,
Ji
,
H.
,
Hilton
,
K.
,
Wallis
,
D.
,
Uren
,
M. J.
,
Martin
,
T.
, and
Kuball
,
M.
,
2007
, “
Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices
,”
IEEE Trans. Electron Devices
,
54
(
12
), pp.
3152
3158
.
65.
Manoi
,
A.
,
Pomeroy
,
J. W.
,
Killat
,
N.
, and
Kuball
,
M.
,
2010
, “
Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure
,”
IEEE Electron Device Lett.
,
31
(
12
), pp.
1395
1397
.
66.
Riedel
,
G. J.
,
Pomeroy
,
J. W.
,
Hilton
,
K. P.
,
Maclean
,
J. O.
,
Wallis
,
D. J.
,
Uren
,
M. J.
,
Martin
,
T.
,
Forsberg
,
U.
,
Lundskog
,
A.
, and
Kakanakova-Georgieva
,
A.
,
2009
, “
Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers
,”
IEEE Electron Device Lett.
,
30
(
2
), pp.
103
106
.
67.
Chu
,
K.
,
Chao
,
P.
,
Pizzella
,
M.
,
Actis
,
R.
,
Meharry
,
D.
,
Nichols
,
K.
,
Vaudo
,
R.
,
Xu
,
X.
,
Flynn
,
J.
, and
Dion
,
J.
,
2004
, “
9.4-W/mm Power Density AlGaN-GaN HEMTs on Free-Standing GaN Substrates
,”
IEEE Electron Device Lett.
,
25
(
9
), pp.
596
598
.
68.
Hirama
,
K.
,
Taniyasu
,
Y.
, and
Kasu
,
M.
,
2011
, “
AlGaN/GaN High-Electron Mobility Transistors With Low Thermal Resistance Grown on Single-Crystal Diamond (111) Substrates by Metalorganic Vapor-Phase Epitaxy
,”
Appl. Phys. Lett.
,
98
(
16
), p.
162112
.
69.
Mikulics
,
M.
,
Kočan
,
M.
,
Rizzi
,
A.
,
Javorka
,
P.
,
Sofer
,
Z.
,
Stejskal
,
J.
,
Marso
,
M.
,
Kordoš
,
P.
, and
Lüth
,
H.
,
2005
, “
Growth and Properties of GaN and AlN Layers on Silver Substrates
,”
Appl. Phys. Lett.
,
87
(
21
), p.
212109
.
70.
Hiroki
,
M.
,
Kumakura
,
K.
,
Kobayashi
,
Y.
,
Akasaka
,
T.
,
Makimoto
,
T.
, and
Yamamoto
,
H.
,
2014
, “
Suppression of Self-Heating Effect in AlGaN/GaN High Electron Mobility Transistors by Substrate-Transfer Technology Using h-BN
,”
Appl. Phys. Lett.
,
105
(
19
), p.
193509
.
71.
Chabak
,
K. D.
,
Gillespie
,
J. K.
,
Miller
,
V.
,
Crespo
,
A.
,
Roussos
,
J.
,
Trejo
,
M.
,
Walker
,
D. E.
,
Via
,
G. D.
,
Jessen
,
G. H.
, and
Wasserbauer
,
J.
,
2010
, “
Full-Wafer Characterization of AlGaN/GaN HEMTs on Free-Standing CVD Diamond Substrates
,”
IEEE Electron Device Lett.
,
31
(
2
), pp.
99
101
.
72.
Hwang
,
Y.-H.
,
Kang
,
T.-S.
,
Ren
,
F.
, and
Pearton
,
S. J.
,
2014
, “
Novel Approach to Improve Heat Dissipation of AlGaN/GaN High Electron Mobility Transistors With a Cu Filled Via Under Device Active Area
,”
J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
,
32
(
6
), p.
061202
.
73.
Yan
,
Z.
,
Liu
,
G.
,
Khan
,
J. M.
, and
Balandin
,
A. A.
,
2012
, “
Graphene-Graphite Quilts for Thermal Management of High-Power GaN Transistors
,” preprint
arXiv: 1203.6099
.https://arxiv.org/abs/1203.6099
74.
Zhou
,
Y.
,
Ramaneti
,
R.
,
Anaya
,
J.
,
Korneychuk
,
S.
,
Derluyn
,
J.
,
Sun
,
H.
,
Pomeroy
,
J.
,
Verbeeck
,
J.
,
Haenen
,
K.
, and
Kuball
,
M.
,
2017
, “
Thermal Characterization of Polycrystalline Diamond Thin Film Heat Spreaders Grown on GaN HEMTs
,”
Appl. Phys. Lett.
,
111
(
4
), p.
041901
.
75.
Lin
,
Z.
,
Liu
,
C.
, and
Chai
,
Y.
,
2016
, “
High Thermally Conductive and Electrically Insulating 2D Boron Nitride Nanosheet for Efficient Heat Dissipation of High-Power Transistors
,”
2D Mater.
,
3
(
4
), p.
041009
.
76.
Oh
,
S. K.
,
Jang
,
T.
,
Jo
,
Y. J.
,
Ko
,
H.-Y.
, and
Kwak
,
J. S.
,
2016
, “
Bonding Pad Over Active Structure for Chip Shrinkage of High-Power AlGaN/GaN HFETs
,”
IEEE Trans. Electron Devices
,
63
(
2
), pp.
620
624
.
77.
Oh
,
S. K.
,
Jang
,
T.
,
Pouladi
,
S.
,
Jo
,
Y. J.
,
Ko
,
H.-Y.
,
Ryou
,
J.-H.
, and
Kwak
,
J. S.
,
2016
, “
Output Power Enhancement in AlGaN/GaN Heterostructure Field-Effect Transistors With Multilevel Metallization
,”
Appl. Phys. Express
,
10
(
1
), p.
016502
.
78.
Cheng
,
S.
,
Chou
,
P.-C.
,
Chieng
,
W.-H.
, and
Chang
,
E.
,
2013
, “
Enhanced Lateral Heat Dissipation Packaging Structure for GaN HEMTs on Si Substrate
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
20
24
.
79.
Loutfy
,
K.
, and
Hirotsuru
,
H.
,
2011
, “
Advanced Diamond Based Metal Matrix Composites for Thermal Management of RF Devices
,”
IEEE 12th Annual Wireless and Microwave Technology Conference
(
WAMICON
), Clearwater Beach, FL, Apr. 18–19, pp.
1
5
.
80.
Davidson
,
H. L.
,
Colella
,
N. J.
,
Kerns
,
J. A.
, and
Makowiecki
,
D.
, 1995, “
Copper-Diamond Composite Substrates for Electronic Components
,”
45th Electronic Components and Technology
, Las Vegas, NV, May 21–24, pp.
538
541
.
81.
Faqir
,
M.
,
Batten
,
T.
,
Mrotzek
,
T.
,
Knippscheer
,
S.
,
Massiot
,
M.
,
Buchta
,
M.
,
Blanck
,
H.
,
Rochette
,
S.
,
Vendier
,
O.
, and
Kuball
,
M.
,
2012
, “
Improved Thermal Management for GaN Power Electronics: Silver Diamond Composite Packages
,”
Microelectron. Reliab.
,
52
(
12
), pp.
3022
3025
.
82.
Das
,
J.
,
Oprins
,
H.
,
Ji
,
H.
,
Sarua
,
A.
,
Ruythooren
,
W.
,
Derluyn
,
J.
,
Kuball
,
M.
,
Germain
,
M.
, and
Borghs
,
G.
,
2006
, “
Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design
,”
IEEE Trans. Electron Devices
,
53
(
11
), pp.
2696
2702
.
83.
Sun
,
J.
,
Fatima
,
H.
,
Koudymov
,
A.
,
Chitnis
,
A.
,
Hu
,
X.
,
Wang
,
H.-M.
,
Zhang
,
J.
,
Simin
,
G.
,
Yang
,
J.
, and
Khan
,
M. A.
,
2003
, “
Thermal Management of AlGaN-GaN HFETs on Sapphire Using Flip-Chip Bonding With Epoxy Underfill
,”
IEEE Electron Device Lett.
,
24
(
6
), pp.
375
377
.
84.
Agarwal
,
G.
,
Kazior
,
T.
,
Kenny
,
T.
, and
Weinstein
,
D.
,
2016
, “
Modeling and Analysis for Thermal Management in GaN HEMTs Using Microfluidic Cooling
,”
ASME J. Electron. Packag.
,
139
(
1
), p.
011001
.
85.
Brick
,
P.
, and
Schmid
,
T.
, 2011, “
Automotive Headlamp Concepts With Low-Beam and High-Beam out of a Single LED
,”
Proc. SPIE
,
8170
, p.
817008
.
86.
Elger
,
G.
,
Spinger
,
B.
,
Bienen
,
N.
, and
Benter
,
N.
,
2013
, “
LED Matrix Light Source for Adaptive Driving Beam Applications
,”
63rd Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 28–31, pp.
535
540
.
87.
Long
,
X.
,
He
,
J.
,
Zhou
,
J.
,
Fang
,
L.
,
Zhou
,
X.
,
Ren
,
F.
, and
Xu
,
T.
,
2015
, “
A Review on Light-Emitting Diode Based Automotive Headlamps
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
29
41
.
88.
Narendran
,
N.
, and
Gu
,
Y.
,
2005
, “
Life of LED-Based White Light Sources
,”
J. Display Technol.
,
1
(
1
), pp.
167
171
.
89.
Wang
,
J.
,
Cai
,
Y.-X.
,
Zhao
,
X.-J.
, and
Zhang
,
C.
,
2014
, “
Thermal Design and Simulation of Automotive Headlamps Using White LEDs
,”
Microelectron. J.
,
45
(
2
), pp.
249
255
.
90.
Zhou
,
J.
,
Long
,
X.-M.
,
He
,
J.-G.
,
Fang
,
L.
, and
Li
,
X.
,
2017
, “
System-Level Thermal Design for LED Automotive Lamp-Based Multiobjective Simulation
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
4
), pp.
591
601
.
91.
Arik
,
M.
,
Becker
,
C.
,
Weaver
,
S.
, and
Petroski
,
J.
, 2003, “
Thermal Management of LEDs: Package to System
,”
Proc. SPIE
,
5187
, pp. 64–75.
92.
Arik
,
M.
, and
Weaver
,
S.
, 2004, “
Chip-Scale Thermal Management of High-Brightness LED Packages
,”
Proc. SPIE
,
5530
, p.
215
.
93.
Ha
,
J.-S.
,
Lee
,
S.
,
Lee
,
H.-J.
,
Lee
,
H.-J.
,
Lee
,
S.
,
Goto
,
H.
,
Kato
,
T.
,
Fujii
,
K.
,
Cho
,
M.
, and
Yao
,
T.
,
2008
, “
The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process
,”
IEEE Photonics Technol. Lett.
,
20
(
3
), pp.
175
177
.
94.
Liu
,
Y.
,
Leung
,
S. Y.
,
Zhao
,
J.
,
Wong
,
C. K.
,
Yuan
,
C. A.
,
Zhang
,
G.
,
Sun
,
F.
, and
Luo
,
L.
,
2014
, “
Thermal and Mechanical Effects of Voids Within Flip Chip Soldering in LED Packages
,”
Microelectron. Reliab.
,
54
(
9–10
), pp.
2028
2033
.
95.
Kim
,
H.-H.
,
Choi
,
S.-H.
,
Shin
,
S.-H.
,
Lee
,
Y.-G.
,
Choi
,
S.-M.
, and
Oh
,
Y.-S.
,
2005
, “
Thermal Transient Characteristics of Die Attach in High Power LED Package
,”
J. Microelectron. Packag. Soc.
,
12
(
4
), pp.
331
338
.
96.
Fan
,
B.
,
Wu
,
H.
,
Zhao
,
Y.
,
Xian
,
Y.
,
Zhang
,
B.
, and
Wang
,
G.
,
2008
, “
Thermal Study of High-Power Nitride-Based Flip-Chip Light-Emitting Diodes
,”
IEEE Trans. Electron Devices
,
55
(
12
), pp.
3375
3382
.
97.
Grötsch
,
S.
,
Pfeuffer
,
A.
,
Liebetrau
,
T.
,
Oppermann
,
H.
,
Brink
,
M.
,
Fiederling
,
R.
,
Möllers
,
I.
, and
Moisel
,
J.
, 2015, “
Integrated High Resolution LED Light Sources in an AFS/ADB Headlamp
,”
International Symposium on Automotive Lighting
, p.
241
.
98.
Wong
,
C.
, and
Bollampally
,
R. S.
,
1999
, “
Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled With Ceramic Particles for Electronic Packaging
,”
J. Appl. Polym. Sci.
,
74
(
14
), pp.
3396
3403
.
99.
Decrossas
,
E.
,
Glover
,
M. D.
,
Porter
,
K.
,
Cannon
,
T.
,
Stegeman
,
T.
,
Allen-McCormack
,
N.
,
Hamilton
,
M. C.
, and
Mantooth
,
H. A.
,
2015
, “
High-Performance and High-Data-Rate Quasi-Coaxial LTCC Vertical Interconnect Transitions for Multichip Modules and System-on-Package Applications
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
3
), pp.
307
313
.
100.
Jeng
,
M.-J.
,
Chiang
,
K.-L.
,
Chang
,
H.-Y.
,
Yen
,
C.-Y.
,
Lin
,
C.-C.
,
Chang
,
Y.-H.
,
Lai
,
M.-J.
,
Lee
,
Y.-L.
, and
Chang
,
L.-B.
,
2012
, “
Heat Sink Performances of GaN/InGaN Flip-Chip Light-Emitting Diodes Fabricated on Silicon and AlN Submounts
,”
Microelectron. Reliab.
,
52
(
5
), pp.
884
888
.
101.
Jorda
,
X.
,
Perpina
,
X.
,
Vellvehi
,
M.
, and
Coleto
,
J.
,
2008
, “
Power-Substrate Static Thermal Characterization Based on a Test Chip
,”
IEEE Trans. Device Mater. Reliab.
,
8
(
4
), pp.
671
679
.
102.
Fishbein
,
I.
, and
Abramowitz
,
N.
,
1992
, “
Insulated Metal Substrates Improve in Performance and Product Implementation
,”
Seventh Annual Applied Power Electronics Conference and Exposition (APEC'92),
pp.
633
638
.
103.
Yung
,
W. K.
,
2007
, “
Using Metal Core Printed Circuit Board (MCPCB) as a Solution for Thermal Management
,”
J. HKPCA
, p.
Q2
104.
Cho
,
H. M.
, and
Kim
,
H. J.
,
2008
, “
Metal-Core Printed Circuit Board With Alumina Layer by Aerosol Deposition Process
,”
IEEE Electron Device Lett.
,
29
(
9
), pp.
991
993
.
105.
Juntunen
,
E.
,
Tapaninen
,
O.
,
Sitomaniemi
,
A.
,
Jämsä
,
M.
,
Heikkinen
,
V.
,
Karppinen
,
M.
, and
Karioja
,
P.
,
2014
, “
Copper-Core MCPCB With Thermal Vias for High-Power COB LED Modules
,”
IEEE Trans. Power Electron.
,
29
(
3
), pp.
1410
1417
.
106.
Juntunen
,
E.
,
Sitomaniemi
,
A.
,
Tapaninen
,
O.
,
Persons
,
R.
,
Challingsworth
,
M.
, and
Heikkinen
,
V.
,
2012
, “
Thermal Performance Comparison of Thick-Film Insulated Aluminum Substrates With Metal Core PCBs for High-Power LED Modules
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
12
), pp.
1957
1964
.
107.
Park
,
J. K.
,
Lee
,
Y. K.
,
Choi
,
S. H.
,
Shin
,
S. H.
, and
Choi
,
M. S.
,
2011
, “
Formation of Through Aluminum Via for Noble Metal PCB and Packaging Substrate
,”
IEEE 61st Electronic Components and Technology Conference
(
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
1787
1790
.
108.
Karimpourian
,
B.
, and
Mahmoudi
,
J.
,
2005
, “
Some Important Considerations in Heatsink Design
,”
Sixth International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems
(
EuroSimE
), Berlin, Germany, Apr. 18–20, pp.
406
413
.
109.
Yu
,
S.-H.
,
Lee
,
K.-S.
, and
Yook
,
S.-J.
,
2011
, “
Optimum Design of a Radial Heat Sink Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2499
2505
.
110.
Park
,
S. J.
, and
Lee
,
Y. L.
,
2014
, “
Study on the Development of High-Efficiency, Long-Life LED Fog Lamps for the Used Car Market
,”
Trans. Elect. Electron. Mater
,
15
(
4
), pp.
201
206
.
111.
Jang
,
D.
,
Yook
,
S.-J.
, and
Lee
,
K.-S.
,
2014
, “
Optimum Design of a Radial Heat Sink With a Fin-Height Profile for High-Power LED Lighting Applications
,”
Appl. Energy
,
116
, pp.
260
268
.
112.
Zhao
,
X.-J.
,
Cai
,
Y.-X.
,
Wang
,
J.
,
Li
,
X.-H.
, and
Zhang
,
C.
,
2015
, “
Thermal Model Design and Analysis of the High-Power LED Automotive Headlight Cooling Device
,”
Appl. Therm. Eng.
,
75
, pp.
248
258
.
113.
Jang
,
S.
, and
Shin
,
M. W.
,
2008
, “
Thermal Analysis of LED Arrays for Automotive Headlamp With a Novel Cooling System
,”
IEEE Trans. Device Mater. Reliab.
,
8
(
3
), pp.
561
564
.
114.
Lu
,
X.-y.
,
Hua
,
T.-C.
, and
Wang
,
Y.-P.
,
2011
, “
Thermal Analysis of High Power LED Package With Heat Pipe Heat Sink
,”
Microelectron. J.
,
42
(
11
), pp.
1257
1262
.
115.
Wang
,
Y.
,
Cen
,
J.
,
Jiang
,
F.
, and
Cao
,
W.
,
2017
, “
Heat Dissipation of High-Power Light Emitting Diode Chip on Board by a Novel Flat Plate Heat Pipe
,”
Appl. Therm. Eng.
,
123
, pp.
19
28
.
116.
Lai
,
Y.
,
Cordero
,
N.
,
Barthel
,
F.
,
Tebbe
,
F.
,
Kuhn
,
J.
,
Apfelbeck
,
R.
, and
Würtenberger
,
D.
,
2009
, “
Liquid Cooling of Bright LEDs for Automotive Applications
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
1239
1244
.
117.
Li
,
J.
,
Lin
,
F.
,
Wang
,
D.
, and
Tian
,
W.
,
2013
, “
A Loop-Heat-Pipe Heat Sink With Parallel Condensers for High-Power Integrated LED Chips
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
18
26
.
118.
Liu
,
S.
,
Lin
,
T.
,
Luo
,
X.
,
Chen
,
M.
, and
Jiang
,
X.
,
2006
, “
A Microjet Array Cooling System for Thermal Management of Active Radars and High-Brightness LEDs
,”
56th Electronic Components and Technology Conference
, San Diego, CA, May 30–June 2, p
5
.
119.
Wang
,
N.
,
C.-h
,
W.
,
Lei
,
J.-X.
, and
Zhu
,
D.-S.
,
2009
, “
Numerical Study on Thermal Management of LED Packaging by Using Thermoelectric Cooling
,”
International Conference on Electronic Packaging Technology & High Density Packaging
(
ICEPT-HDP'09
), Beijing, China, Aug. 10–13, pp.
433
437
.
You do not currently have access to this content.