Thin vapor chambers provide a novel solution to thermal management in mobile electronics. In the pursuit of vapor chamber optimization, characterization of the wicking structure can allow for a better understanding of the limitations of the device. This paper presents two novel testing methods: one for measuring the permeability of various wicking structures and another for measuring the capillary pressure. We find that the permeability of the mesh used in the wicking structure and hybridization of wicking-structures can impact what geometries limit performance, besides impacting performance directly. Specifically, while the permeability of a mesh-pillar hybrid wick follows the weighted average of the mesh and pillar permeability, the capillary pressure is determined by the capillary pore size of just the pillars or just the mesh, whichever is larger.

References

References
1.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J. A.
, and
Gektin
,
V.
,
2017
, “
Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
7
(
8
), pp.
1191
1205
.
2.
Hell
,
P. M.
,
Varga
,
P. J.
, and
Illési
,
Z.
,
2018
, “
Mobile Phones Thermo-Ergonomic Analysis
,”
IEEE 16th International Symposium on Intelligent Systems and Informatics
(
SISY
), Subotica, Serbia, Sept. 13–15, pp.
249
254
.
3.
Yang
,
J.
,
Ge
,
X.
, and
Zhong
,
Y.
,
2018
, “
How Much of Wireless Rates Can Smartphones Support in 5G Networks?
,”
IEEE Network
(epub).
4.
Amir
,
F.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
, Washington, DC.
5.
Bar-Cohen
,
A.
,
Matin
,
K.
,
Jankowski
,
N.
, and
Sharar
,
D.
,
2015
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
010801
.
6.
Li
,
J.
, and
Lv
,
L.
,
2016
, “
Experimental Studies on a Novel Thin Flat Heat Pipe Heat Spreader
,”
Appl. Therm. Eng.
,
93
, pp.
139
146
.
7.
Lee
,
D.
, and
Byon
,
C.
,
2018
, “
Fabrication and Characterization of Pure-Metal-Based Submillimeter-Thick Flexible Flat Heat Pipe With Innovative Wick Structures
,”
Int. J. Heat Mass Transfer
,
122
, pp.
306
314
.
8.
Altman
,
D. H.
,
Wasniewski
,
J. R.
,
North
,
M. T.
,
Kim
,
S. S.
, and
Fisher
,
T. S.
,
2011
, “
Development of Micro/Nano Engineered Wick-Based Passive Heat Spreaders for Thermal Management of High Power Electronic Devices
,”
ASME
Paper No. IPACK2011-52122
.
9.
Tang
,
H.
,
Tang
,
Y.
,
Wan
,
Z.
,
Li
,
J.
,
Yuan
,
W.
,
Lu
,
L.
,
Li
,
Y.
, and
Tang
,
K.
,
2018
, “
Review of Applications and Developments of Ultra-Thin Micro Heat Pipes for Electronic Cooling
,”
Appl. Energy
,
223
, pp.
383
400
.
10.
Liang
,
J.
,
Bakir
,
M. S.
, and
Joshi
,
Y.
,
2017
, “
Microfabricated Thin Silicon Vapor Chamber for Low Profile Thermal Management
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, pp.
529
336
.
11.
Lu
,
M.
,
Mok
,
L.
, and
Bezama
,
R. J.
,
2006
, “
A Graphite Foams Based Vapor Chamber for Chip Heat Spreading
,”
ASME J. Electron. Packag.
,
128
(
4
), pp.
427
431
.
12.
Lewis
,
R.
,
Liew
,
L.-A.
,
Xu
,
S.
,
Lee
,
Y. C.
, and
Yang
,
R.
,
2015
, “
Microfabricated Ultra-Thin All-Polymer Thermal Ground Planes
,”
Sci. Bull.
,
60
(
7
), pp.
701
706
.
13.
Qu
,
J.
,
Wu
,
H.
,
Cheng
,
P.
,
Wang
,
Q.
, and
Sun
,
Q.
,
2017
, “
Recent Advances in MEMS-Based Micro Heat Pipes
,”
Int. J. Heat Mass Transfer
,
110
, pp.
294
313
.
14.
Mengyao
,
W.
,
He
,
B.
,
Liang
,
Q.
,
Somasundaram
,
S.
,
Tan
,
C. S.
, and
Wang
,
E. N.
,
2017
, “
Study of Ultra-Thin Silicon Micropillar Based Vapor Chamber
,”
Third World Congress on Mechanical, Chemical, and Material Engineering
(
MCM'17
), Rome, Italy, June 8–10, p. 124.https://avestia.com/MCM2017_Proceedings/files/paper/HTFF/HTFF_124.pdf
15.
Oshman
,
C.
,
Li
,
Q.
,
Liew
,
L.-A.
,
Yang
,
R.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
,
2012
, “
Flat Flexible Polymer Heat Pipes
,”
J. Micromech. Microeng.
,
23
(
1
), p.
015001
.
16.
Ju
,
Y. S.
,
Kaviany
,
M.
,
Nam
,
Y.
,
Sharratt
,
S.
,
Hwang
,
G. S.
,
Catton
,
I.
,
Fleming
,
E.
, and
Dussinger
,
P.
,
2013
, “
Planar Vapor Chamber With Hybrid Evaporator Wicks for the Thermal Management of High-Heat-Flux and High-Power Optoelectronic Devices
,”
Int. J. Heat Mass Transfer
,
60
, pp.
163
169
.
17.
Zhang
,
C.
,
Rong
,
G.
,
Palko
,
J. W.
,
Dusseault
,
T. J.
,
Asheghi
,
M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2015
, “
Tailoring of Permeability in Copper Inverse Opal for Electronic Cooling Applications
,”
ASME
Paper No. IPACK2015-48262
.
18.
Wang
,
Y. X.
, and
Peterson
,
G. P.
,
2003
, “
Capillary Evaporation in Microchanneled Polymer Films
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
354
359
.
19.
Ding
,
C.
,
Soni
,
G.
,
Bozorgi
,
P.
,
Piorek
,
B. D.
,
Meinhart
,
C. D.
, and
MacDonald
,
N. C.
,
2010
, “
A Flat Heat Pipe Architecture Based on Nanostructured Titania
,”
J. Microelectromech. Syst.
,
19
(
4
), pp.
878
884
.
20.
Hwang
,
G. S.
,
Nam
,
Y.
,
Fleming
,
E.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
,
2010
, “
Multi-Artery Heat Pipe Spreader: Experiment
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2662
2669
.
21.
Dai
,
X.
,
Yang
,
F.
,
Yang
,
R.
,
Lee
,
Y. C.
, and
Li
,
C.
,
2013
, “
Micromembrane-Enhanced Capillary Evaporation
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1101
1108
.
22.
Oshman
,
C.
,
Shi
,
B.
,
Li
,
C.
,
Yang
,
R.
,
Lee
,
Y. C.
,
Peterson
,
G. P.
, and
Bright
,
V. M.
,
2011
, “
The Development of Polymer-Based Flat Heat Pipes
,”
J. Microelectromech. Syst.
,
20
(
2
), pp.
410
417
.
23.
Xu
,
S.
,
Lewis
,
R.
,
Liew
,
L.-A.
,
Lee
,
Y.-C.
, and
Yang
,
R.
,
2016
, “
Development of Ultra-Thin Thermal Ground Planes by Using Stainless-Steel Mesh as Wicking Structure
,”
J. Microelectromech. Syst.
,
25
(
5
), pp.
842
844
.
24.
Ravi
,
S.
,
Dharmarajan
,
R.
, and
Moghaddam
,
S.
,
2016
, “
Physics of Fluid Transport in Hybrid Biporous Capillary Wicking Microstructures
,”
Langmuir
,
32
(
33
), pp.
8289
8297
.
25.
Holley
,
B.
, and
Faghri
,
A.
,
2006
, “
Permeability and Effective Pore Radius Measurements for Heat Pipe and Fuel Cell Applications
,”
Appl. Therm. Eng.
,
26
(
4
), pp.
448
462
.
26.
Rong
,
G.
,
Palko
,
J. W.
,
Oyarzun
,
D. I.
,
Zhang
,
C.
,
Hammerle
,
J.
,
Asheghi
,
M.
,
Goodson
,
K.
, and
Santiago
,
J. G.
,
2018
, “
A Method for Quantifying in Plane Permeability of Porous Thin Films
,”
J. Colloid Interface Sci.
, 530, pp. 667–674.
27.
Ravi
,
S.
,
Horner
,
D.
, and
Moghaddam
,
S.
,
2014
, “
A Novel Method for Characterization of Liquid Transport Through Micro-Wicking Arrays
,”
Microfluid. Nanofluid.
,
17
(
2
), pp.
349
357
.
28.
Ravi
,
S.
,
Horner
,
D.
, and
Moghaddam
,
S.
,
2014
, “
Monoporous Micropillar Wick Structures—Part I: Mass Transport Characteristics
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1371
1377
.
29.
Lewis
,
R.
,
Xu
,
S.
,
Liew
,
L. A.
,
Coolidge
,
C.
,
Yang
,
R.
, and
Lee
,
Y. C.
,
2015
, “
Thin Flexible Thermal Ground Planes: Fabrication and Scaling Characterization
,”
J. Microelectromech. Syst.
,
24
(
6
), pp.
2040
2048
.
30.
Chi
,
S. W.
,
1976
,
Heat Pipe Theory and Practice: A Sourcebook
,
McGraw-Hill
, New York, p.
41
.
31.
Yuki
,
K.
,
Fukushima
,
K.
,
Takemura
,
A.
, and
Suzuki
,
K.
,
2015
, “
Wettability and Evaporation Enhancement for Heat Transport Devices by High Performance Oxide Layer
,”
International Conference on Electronics Packaging and iMAPS All Asia Conference
(
ICEP-IAAC
), Kyoto, Japan, Apr. 14–17, pp.
601
604
.
32.
Lv
,
L.
, and
Li
,
J.
,
2017
, “
Managing High Heat Flux Up to 500 W/cm2 Through an Ultra-Thin Flat Heat Pipe With Superhydrophilic Wick
,”
Appl. Therm. Eng.
,
122
, pp.
593
600
.
You do not currently have access to this content.