The high current densities in today's microelectronic devices and microchips lead to hotspot formations and other adverse effects on their performance. Therefore, a computational tool is needed to not only analyze but also accurately predict spatial and temporal temperature distribution while minimizing the computational effort within the chip architecture. In this study, a proper orthogonal decomposition (POD)-Galerkin projection-based reduced order model (ROM) was developed for modeling transient heat transfer in three-dimensional (3D) microchip interconnects. comsol software was used for producing the required data for ROM and for verifying the results. The developed technique has the ability to provide accurate results for various boundary conditions on the chip and interconnects domain and is capable of providing accurate results for nonlinear conditions, where thermal conductivity is temperature dependent. It is demonstrated in this work that a limited number of observations are sufficient for mapping out the entire evolution of temperature field within the domain for transient boundary. Furthermore, the accuracy of the results obtained from the developed ROM and the stability of accuracy over time is investigated. Finally, it is shown that the developed technique provides a 60-fold reduction in simulation time compared to finite element techniques.

References

References
1.
Bilotti
,
A. A.
,
1974
, “
Static Temperature Distribution in IC Chips With Isothermal Heat Sources
,”
IEEE Trans. Electron Devices
,
21
(
3
), pp.
217
226
.
2.
Andrews
,
R. V.
,
1955
, “
Solving Conductive Heat Transfer Problems With Electrical-Analogue Shape Factor
,”
Chem. Eng. Prog.
,
51
, pp.
67
71
.https://www.osti.gov/biblio/4382113
3.
Gray
,
P. R.
, and
Hamilton
,
D. J.
,
1971
, “
Analysis of Electro Thermal Integrated Circuits
,”
IEEE J. Solid-State Circuits
,
6
(
1
), pp.
8
14
.
4.
Cook
,
J. T.
,
Joshi
,
Y. K.
, and
Doraiswami
,
R.
,
2004
, “
Interconnect Thermal Management of High Power Packaged Electronic Architectures
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 9–11, pp. 30–37.
5.
Subrina
,
S.
,
2012
, “
Heat Transfer in Graphene Interconnect Networks With Graphene Lateral Heat Spreaders
,”
IEEE Trans. Nanotechnol.
,
11
(
4
), pp.
777
781
.
6.
Bosch
,
E. G. T.
, and
Sabry
,
M. N.
,
2002
, “
Thermal Compact Models for Electronic Systems
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 12–14, pp. 21–29.
7.
Huang
,
W.
,
Stan
,
M. R.
, and
Skadron
,
K.
,
2005
, “
Parameterized Physical Compact Thermal Modeling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
28
, pp.
615
622
.
8.
Bansal
,
A.
,
Meterelliyoz
,
M.
,
Singh
,
S.
,
Choi
,
J. H.
,
Murthy
,
J.
, and
Roy
,
K.
,
2006
, “
Compact Thermal Models for Estimation of Temperature-Dependent Power/Performance in FinFET Technology
,”
IEEE Asia and South Pacific Conference on Design Automation
(
ASP-DAC 2006
), Yokohama, Japan, Jan. 24–27, pp. 237–242.
9.
Gurrum
,
S. P.
,
Joshi
,
Y. K.
,
King
,
W. P.
,
Ramakrishna
,
K.
, and
Gall
,
M.
,
2008
, “
A Compact Approach to On-Chip Interconnect Heat Conduction Modeling Using the Finite Element Method
,”
ASME J. Electron. Packag.
,
130
(
3
), p.
031001
.
10.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J.
, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,
Cambridge University Press
,
New York
.
11.
Kirby
,
M.
, and
Sirovich
,
L.
,
1990
, “
Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
12
(
1
), pp.
103
108
.
12.
Pearson
,
K.
,
1901
, “
LIII. On Lines and Planes of Closest Fit to Systems of Points in Space
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.
13.
Corigliano
,
A.
,
Dossi
,
M.
, and
Mariani
,
S.
,
2013
, “
Domain Decomposition and Model Order Reduction Methods Applied to the Simulation of Multi-Physics Problems in MEMS
,”
Comput. Struct.
,
122
, pp.
113
127
.
14.
Rama
,
R. R.
,
Skatulla
,
S.
, and
Sansour
,
C.
,
2016
, “
Real-Time Modelling of Diastolic Filling of the Heart Using the Proper Orthogonal Decomposition With Interpolation
,”
Int. J. Solids Struct.
,
96
, pp.
409
422
.
15.
Antoranz
,
A.
,
Ianiro
,
A.
,
Flores
,
O.
, and
Garcia-Villalba
,
M.
,
2018
, “
Extended Proper Orthogonal Decomposition of Non-Homogeneous Thermal Fields in a Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1264
1275
.
16.
Mahapatra
,
P. S.
,
Chatterjee
,
S.
,
Mukhopadhyay
,
A.
, and
Manna
,
N. K.
,
2016
, “
Proper Orthogonal Decomposition of Thermally-Induced Flow Structure in an Enclosure With Alternately Active Localized Heat Sources
,”
Int. J. Heat Mass Transfer
,
94
, pp.
373
379
.
17.
Gao
,
X.
,
Hu
,
J.
, and
Huang
,
S.
,
2016
, “
A Proper Orthogonal Decomposition Analysis Method for Multimedia Heat Conduction Problems
,”
ASME J. Heat Transfer
,
138
(
7
), p.
071301
.
18.
Blanc
,
T. J.
,
Jones
,
M. R.
, and
Gorrell
,
S. E.
,
2016
, “
Reduced-Order Modeling of Conjugate Heat Transfer Processes
,”
ASME J. Heat Transfer
,
138
(
5
), p.
051703
.
19.
Hamim
,
S. U.
, and
Singh
,
R. P.
,
2017
, “
Proper Orthogonal Decomposition-Radial Basis Function Surrogate Model-Based Inverse Analysis for Identifying Nonlinear Burgers Model Parameters From Nanoindentation Data
,”
ASME J. Eng. Mater. Technol.
,
139
(
4
), p.
041010
.
20.
Al-Shudeifat
,
M. A.
,
Al Mehairi
,
A.
,
Saeed
,
A. S.
, and
Balawi
,
S.
,
2018
, “
Application of Proper Orthogonal Decomposition Method to Cracked Rotors
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
11
), p.
111006
.
21.
Sinha
,
A.
,
Chauhan
,
R. O.
, and
Balasubramanian
,
S.
,
2018
, “
Characterization of a Superheated Water Jet Released Into Water Using Proper Orthogonal Decomposition Method
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081107
.
22.
Wangkun
,
J.
,
Helenbrook
,
B. T.
, and
Cheng
,
M. C.
,
2014
, “
Thermal Modeling of Multi-Fin Field Effect Transistor Structure Using Proper Orthogonal Decomposition
,”
IEEE Trans. Electron Devices
,
61
, pp.
2752
2759
.
23.
Wangkun
,
J.
,
Helenbrook
,
B. T.
, and
Cheng
,
M. C.
,
2016
, “
Fast Thermal Modeling of FinFET Circuits Based on Multiblock Reduced-Order Model
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
35
(
7
), pp.
1114
1124
.
24.
Barabadi
,
B.
,
Kumar
,
S.
, and
Joshi
,
Y. K.
,
2017
, “
Transient Heat Conduction in On-Chip Interconnects Using Proper Orthogonal Decomposition Method
,”
ASME J. Heat Transfer
,
139
(
7
), p.
072101
.
25.
Barabadi
,
B.
,
Kumar
,
S.
,
Sukharev
,
V.
, and
Joshi
,
Y. K.
,
2015
, “
Multiscale Transient Thermal Analysis of Microelectronics
,”
ASME J. Heat Transfer
,
137
(
3
), p.
031002
.
26.
Bizon
,
K.
,
Continillo
,
G.
,
Russo
,
L.
, and
Smula
,
J.
,
2008
, “
On POD Reduced Models of Tubular Reactor With Periodic Regimes
,”
Comput. Chem. Eng.
,
32
(
6
), pp.
1305
1315
.
27.
Bagnall
,
K. R.
,
Yuri
,
S.
, and
Wang
,
E. N.
,
2014
, “
Application of the Kirchhoff Transform to Thermal Spreading Problems With Convection Boundary Conditions
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
3
), pp.
408
420
.
28.
Lide, R. D.
,
2004
,
CRC Handbook of Chemistry and Physics
,
84th ed.
,
CRC Press
, Boca Raton, FL.
29.
Morzynski
,
M.
,
Stankiewics
,
W.
,
Noack
,
B. R.
,
Thiele
,
F.
,
King
,
R.
, and
Tadmor
,
G.
,
2006
, “
Generalized Mean-Field Model for Flow Control Using a Continuous Mode Interpolation
,”
AIAA
Paper No. 2006-3488
.
30.
Shinde
,
V.
,
Longatte
,
E.
,
Baj
,
F.
, and
Hoarau
,
Y.
,
2015
, “
A Galerkin-Free Model Reduction Approach for the Navier-Stokes Equations
,”
J. Comput. Phys.
,
309
, pp.
148
163
.
31.
Lieu
,
T.
,
Farhat
,
C.
, and
Lesoinne
,
M.
,
2006
, “
Reduced-Order Fluid/Structure Modeling of Complete Aircraft Configuration
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5730
5742
.
32.
Amsallem
,
D.
, and
Farhat
,
C.
,
2008
, “
Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity
,”
AIAA J.
,
46
(
7
), pp.
1803
1813
.
33.
Raghupathy
,
A. P.
,
Ghia
,
U.
, and
Ghia
,
K.
,
2009
, “
Boundary-Condition-Independent Reduced-Order Modeling of Complex 2D Objects by POD-Galerkin Methodology
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp. 208–215.
You do not currently have access to this content.