The incorporation of a micro copper pillar is considered as the major interconnection method in three-dimensional (3D) integrated circuit (IC) intergradation under high-density I/O conditions. To achieve low-temperature bonding, this study investigated the thermosonic flip chip bonding of a copper pillar with a tin cap. The effect of bonding force on bonding strength was studied, and an average bonding strength 2500 g (approximately 84.8 MPa) was obtained in 2 s, at an optimized bonding force of 0.11 N per 40 μm pillar bump, and substrate temperature of 200 °C. Additionally, the effect of the bonding force on bonding interface microstructure and intermetallic compounds (IMCs) was also investigated. Tin whiskers were also observed at the bonding interface at low bonding forces.

References

References
1.
Sakuma
,
K.
,
Andry
,
P. S.
,
Tsang
,
C. K.
,
Wright
,
S. L.
,
Dang
,
B.
,
Patel
,
C. S.
,
Webb
,
B. C.
,
Maria
,
J.
,
Sprogis
,
E. J.
,
Kang
,
S. K.
,
Polastre
,
R. J.
,
Horton
,
R. R.
, and
Knickerbocker
,
J. U.
,
2008
, “
3D Chip-Stacking Technology With Through-Silicon Vias and Low-Volume Lead-Free Interconnections
,”
IBM J. Res. Develop.
,
52
(
6
), pp.
611
622
.
2.
Koyanagi
,
M.
,
Kurino
,
H.
,
Lee
,
K. W.
,
Sakuma
,
K.
,
Miyakawa
,
N.
, and
Itani
,
H.
,
1998
, “
Future System-on-Silicon LSI Chips
,”
IEEE Micro
,
18
(
4
), pp.
17
22
.
3.
Dziuban
,
J. A.
,
2007
,
Bonding in Microsystem Technology
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
4.
Gerber
,
M.
,
Beddingfield
,
C.
,
O'Connor
,
S.
,
Yoo
,
M.
,
Lee
,
M.
,
Kang
,
D.
,
Park
,
S.
,
Zwenger
,
C.
,
Darveaux
,
R.
,
Lanzone
,
R.
, and
Park
,
K.
,
2011
, “
Next Generation Fine Pitch Cu Pillar Technology—Enabling Next Generation Silicon Nodes
,”
IEEE 61st Electronic Components and Technology Conference
(
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
612
618
.
5.
Koh
,
W.
,
Lin
,
B.
, and
Tai
,
J.
,
2011
, “
Copper Pillar Bump Technology Progress Overview
,”
12th International Conference on Electronic Packaging Technology and High Density Packaging
,
Shanghai, China
, Aug. 8–11, pp.
1
5
.
6.
Sakai
,
T.
,
Imaizumi
,
N.
, and
Miyajima
,
T.
,
2012
, “
Low Temperature Cu-Cu Direct Bonding for 3D-IC by Using Fine Crystal Layer
,”
Second IEEE CPMT Symposium Japan
, Kyoto, Japan, Dec. 10–12, pp.
1
4
.
7.
Sakai
,
T.
,
Toshiya
,
A.
,
Imaizumi
,
N.
,
Toyoo
,
M.
, and
Mizukoshi
,
M.
,
2011
, “
Cu-Cu Thermocompression Bonding Using Ultra Precision Cutting of Cu Bumps for 3D-SIC
,”
Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT)
, pp.
001316
001341
.
8.
Juang
,
J. Y.
,
Lu
,
S. T.
,
Chung
,
S. C.
,
Cheng
,
S. M.
,
Lu
,
Y. L.
,
Peng
,
J. S.
, and
Chen
,
T. H.
,
2011
, “
Development of Micro-Bump-Bonded Processes for 3DIC Stacking With High Throughput
,”
Sixth International Microsystems, Packaging, Assembly and Circuits Technology Conference
(
IMPACT
), Taipei, Taiwan, Oct. 19–21, pp.
366
369
.
9.
Lv
,
Y.
,
Chen
,
M.
,
Cai
,
M.
, and
Liu
,
S.
,
2014
, “
A Reliable Cu–Sn Stack Bonding Technology for 3D-TSV Packaging
,”
Semicond. Sci. Technol.
,
29
(
2
), p.
025003
.
10.
Gagnon
,
P.
,
Bergeron
,
C.
,
Langlois
,
R.
,
Barbeau
,
S.
,
Whitehead
,
S.
,
Tyberg
,
C.
,
Robertazzi
,
R.
,
Sakuma
,
K.
,
Wordeman
,
M.
, and
Scheurmann
,
M.
,
2017
, “
Thermo-Compression Bonding and Mass Reflow Assembly Processes of 3D Logic Die Stacks
,”
IEEE 67th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 30–June 2, pp.
116
122
.
11.
Wang
,
F.
, and
Han
,
L.
,
2013
, “
Ultrasonic Effects in the Thermosonic Flip Chip Bonding Process
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
2
), pp.
336
341
.
12.
Wang
,
F.
,
Chen
,
Y.
, and
Han
,
L.
,
2011
, “
Ultrasonic Vibration at Thermosonic Flip-Chip Bonding Interface
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
6
), pp.
852
858
.
13.
Wang
,
F.
, and
Han
,
L.
,
2013
, “
Experimental Study of Thermosonic Gold Bump Flip-Chip Bonding With a Smooth End Tool
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
6
), pp.
930
934
.
14.
Wang
,
F.
,
Li
,
J.
, and
Han
,
L.
,
2014
, “
High-Frequency and Low-Temperature Thermosonic Bonding of Lead-Free Microsolder Ball on Silver Pad Without Flux
,”
ASME J. Electron. Packag.
,
136
(
3
), p.
031001
.
15.
Wang
,
F.
, and
Chen
,
Y.
,
2012
, “
Modeling Study of Thermosonic Flip Chip Bonding Process
,”
Microelectron. Reliab.
,
52
(
11
), pp.
2749
2755
.
16.
McLaren
,
T. S.
,
Kang
,
S. Y.
,
Zhang
,
W.
,
Ju
,
T.-H.
, and
Lee
,
Y.-C.
,
1997
, “
Thermosonic Bonding of an Optical Transceiver Based on an 8 × 8 Vertical Cavity Surface Emitting Laser Array
,”
IEEE Trans. Compon., Packag. Manuf. Technol.: Part B
,
20
(
2
), pp.
152
160
.
17.
McLaren
,
T. S.
, and
Lee
,
Y. C.
,
2000
, “
Modeling and Evaluation Criterion for Thermocompression Flip-Chip Bonding
,”
IEEE Trans. Adv. Packag.
,
23
(
4
), pp.
652
660
.
18.
Pang
,
C. C. H.
,
Hung
,
K.-Y.
, and
Sham
,
M.-L.
,
2004
, “
High Frequency Thermosonic Flip Chip Bonding for Gold to Gold Interconnection
,”
54th Electronic Components and Technology Conference
, Las Vegas, NV, June 4, pp.
1461
1465
.
19.
Rohwer
,
L. E. S.
, and
Chu
,
D.
,
2011
, “
Thin Gold to Gold Bonding for Flip Chip Applications
,”
IEEE 61st Electronic Components and Technology Conference
(
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
907
910
.
20.
Kang
,
S. Y.
,
McLaren
,
T.
,
Zhang
,
W.
, and
Lee
,
Y. C.
,
1995
, “
Thermosonic Bonding for Flip-Chip Assembly
,”
IEEE Multi-Chip Module Conference
(
MCMC-95
), Santa Cruz, CA, Jan. 31–Feb. 2, pp.
75
80
.
21.
Kang
,
S.-Y.
,
Ju
,
T.-H.
, and
Lee
,
Y. C.
,
1993
, “
Thermosonic Bonding: An Alternative to Area-Array Solder Connections
,”
43rd Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, June 1–4, pp.
877
882
.
22.
Zhao
,
H. Y.
,
Liu
,
J. H.
,
Li
,
Z. L.
,
Zhao
,
Y. X.
,
Niu
,
H. W.
,
Song
,
X. G.
, and
Dong
,
H. J.
,
2017
, “
Non-Interfacial Growth of Cu3Sn in Cu/Sn/Cu Joints During Ultrasonic-Assisted Transient Liquid Phase Soldering Process
,”
Mater. Lett.
,
186
, pp.
283
288
.
23.
Li
,
Z.
,
Li
,
M.
,
Xiao
,
Y.
, and
Wang
,
C.
,
2014
, “
Ultrarapid Formation of Homogeneous Cu6Sn5 and Cu3Sn Intermetallic Compound Joints at Room Temperature Using Ultrasonic Waves
,”
Ultrason. Sonochem.
,
21
(
3
), pp.
924
929
.
24.
Wang
,
F.
,
Han
,
L.
, and
Zhong
,
J.
,
2009
, “
Stress-Induced Atom Diffusion at Thermosonic Flip Chip Bonding Interface
,”
Sens. Actuators A: Phys.
,
149
(
1
), pp.
100
105
.
You do not currently have access to this content.