In this work, the elastic–plastic properties of the printed interconnects on a glass substrate with Ag-filled polymer-conductor ink are evaluated through a theoretical framework based on finite element (FE) modeling of instrumented sharp indentation, experimental indentation, the concept of the representative strain, and dimensional analysis. Besides, the influences of the ink-solvent content and temperature on the elastic–plastic and electrical properties of the printed Ag-based interconnects are also addressed. First of all, parametric FE indentation analyses are carried out over a wide range of elastic–plastic material parameters. These parametric results together with the concept of the representative strain are used via dimensional analysis to constitute a number of dimensionless functions, and further the forward/reverse algorithms. The forward algorithm is used for describing the indentation load–depth relationship and the reverse for predicting the elastic–plastic parameters of the printed Ag-based interconnects. The proposed algorithms are validated through the correct predictions of the plastic properties of three known metals. At last, their surface morphology, microstructure, and elemental composition are experimentally characterized. Results show that the elastic–plastic properties and electrical sheet resistance of the printed Ag-based interconnects increase with the ink-solvent content, mainly due to the increase of carbon element as a result of the increased ink-solvent residue, whereas their elastic–plastic properties and electrical performance decreases with the temperature.

References

References
1.
Tummala
,
V. S.
,
Mian
,
A.
,
Chamok
,
N. H.
,
Poduval
,
D.
,
Ali
,
M.
,
Clifford
,
J.
, and
Majumdar
,
P.
,
2017
, “
Three-Dimensional Printed Dielectric Substrates for Radio Frequency Applications
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020904
.
2.
Cheng
,
H.-C.
,
Chen
,
Y.-W.
,
Chen
,
W.-H.
,
Lu
,
S.-T.
, and
Lin
,
S.-M.
,
2018
, “
Assessing Ink Transfer Performance of Gravure Offset Fine Line Circuitry Printing
,”
J. Electron. Mater.
,
47
(
3
), pp.
1832
1846
.
3.
Liao
,
L.-L.
, and
Chiang
,
K.-N.
,
2017
, “
Nonlinear and Temperature-Dependent Material Properties of Au/Sn Intermetallic Compound
,”
J. Mech.
,
33
(
5
), pp.
663
672
.
4.
Klein
,
S. A.
,
Aleksov
,
A.
,
Subramanian
,
V.
,
Malatkar
,
P.
, and
Mahajan
,
R.
,
2017
, “
Mechanical Testing for Stretchable Electronics
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020905
.
5.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
83
.
6.
Song
,
J.-M.
,
Shen
,
Y.-L.
,
Su
,
C.-W.
,
Lai
,
Y.-S.
, and
Chiu
,
Y.-T.
,
2009
, “
Strain Rate Dependence on Nanoindentation Responses of Interfacial Intermetallic Compounds in Electronic Solder Joints With Cu and Ag Substrates
,”
Mater. Trans.
,
50
(
5
), pp.
1231
1234
.
7.
Liu
,
H.
, and
McBride
,
J. W.
, ”
2017
, “
Finite-Element Contact Modeling of Rough Surfaces Applied to Au-Coated Carbon Nanotube Composites
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
3
), pp.
329
337
.
8.
Hsu
,
Y. Y.
,
Papakyrikos
,
C.
,
Liu
,
D.
,
Wang
,
X. Y.
,
Raj
,
M.
,
Zhang
,
B. S.
, and
Ghaffari
,
R.
,
2014
, “
Design for Reliability of Multi-Layer Stretchable Interconnects
,”
J. Micromech. Microeng.
,
24
(
9
), p.
095014
.
9.
Cheng
,
H.-C.
,
Huang
,
H.-H.
,
Chen
,
W.-H.
, and
Lu
,
S.-T.
,
2015
, “
Hygro-Thermo-Mechanical Behavior of Adhesive-Based Flexible Chip-on-Flex Packaging
,”
J. Electron. Mater.
,
44
(
4
), pp.
1220
1237
.
10.
Cheng
,
Y.-T.
, and
Cheng
,
C.-M.
,
1998
, “
Relationships Between Hardness, Elastic Modulus, and the Work of Indentation
,”
Appl. Phys. Lett.
,
73
(
5
), pp.
614
616
.
11.
Dao
,
M.
,
Chollacoop
,
N.
,
Van Vliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
(
19
), pp.
3899
3918
.
12.
Deng
,
X.
,
Chawla
,
N.
,
Chawla
,
K.-K.
, and
Koopman
,
M.
,
2004
, “
Deformation Behavior of (Cu, Ag)-Sn Intermetallics by Nanoindentation
,”
Acta Mater.
,
52
(
14
), pp.
4291
4303
.
13.
Cao
,
Y. P.
, and
Lu
,
J.
,
2004
, “
A New Method to Extract the Plastic Properties of Metal Materials From an Instrumented Spherical Indentation Loading Curve
,”
Acta Mater.
,
52
(
13
), pp.
4023
4032
.
14.
Antunes
,
J.-M.
,
Fernandes
,
J.-V.
,
Menezes
,
L.-F.
, and
Chaparro
,
B.-M.
,
2007
, “
A New Approach for Reverse Analyses in Depth-Sensing Indentation Using Numerical Simulation
,”
Acta Mater.
,
55
(
1
), pp.
69
81
.
15.
Lee
,
J.
,
Lee
,
C.
, and
Kim
,
B.
,
2009
, “
Reverse Analysis of Nano-Indentation Using Different Representative Strains and Residual Indentation Profiles
,”
Mater. Des.
,
30
(
9
), pp.
3395
3404
.
16.
Cheng
,
H.-C.
,
Hu
,
H.-C.
,
Hong
,
R.-Yo
, and
Chen
,
W.-H.
,
2018
, “
Investigation of Stress-Strain Constitutive Behavior of Intermetallic Alloys
,”
J. Mech.
,
34
(
03
), pp.
349
361
.
17.
Tabor
,
D.
,
2000
,
The Hardness of Metals
,
Oxford University Press
,
Oxford, UK
.
18.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1999
, “
Determination of Elastoplastic Properties by Instrumented Sharp Indentation
,”
Scr. Mater.
,
40
(
10
), pp.
1191
1198
.
19.
Ogasawara
,
N.
,
2005
, “
Representative Strain of Indentation Analysis
,”
J. Mater. Res.
,
20
(
8
), pp.
2225
2234
.
20.
Pharr
,
G. M.
,
1998
, “
Measurement of Mechanical Properties by Ultra Low Load Indentation
,”
Mater. Sci. Eng. A
,
253
(
1–2
), pp.
151
159
.
21.
Takagi
,
H.
,
Dao
,
M.
,
Fujiwara
,
M.
, and
Otsuka
,
M.
,
2003
, “
Experimental and Computational Creep Characterization of Al–Mg Solid-Solution Alloy Through Instrumented Indentation
,”
Philos. Mag.
,
83
(
35
), pp.
3959
3976
.
22.
Sharma
,
G.
,
Ramanujan
,
R. V.
,
Kutty
,
T. R. G.
, and
Prabhu
,
N.
,
2005
, “
Indentation Creep Studies of Iron Aluminide Intermetallic Alloy
,”
Intermetallics
,
13
(
1
), pp.
47
53
.
23.
Wu
,
W.
,
Qin
,
F.
,
An
,
T.
, and
Chen
,
P.
,
2016
, “
A Study of Creep Behavior of TSV-Cu Based on Nanoindentaion Creep Test
,”
J. Mech.
,
32
(
6
), pp.
717
724
.
24.
King
,
R. B.
,
1987
, “
Elastic Analysis of Some Punch Problems for a Layered Medium
,”
Int. J. Solids Struct.
,
23
(
12
), pp.
1657
1664
.
25.
Matikainen
,
A.
,
Nuutinen
,
T.
,
Itkonen
,
T.
,
Heinilehto
,
S.
,
Puustinen
,
J.
,
Hiltunen
,
J.
,
Lappalaine
,
J.
,
Karioja
,
P.
, and
Vahimaa
,
P.
,
2016
, “
Atmospheric Oxidation and Carbon Contamination of Silver and Its Effect on Surface-Enhanced Raman Spectroscopy (SERS)
,”
Sci. Rep.
,
6
(
1
), pp.
1
5
.
26.
Khirotdin
,
R. K.
,
Ngadiron
,
M. F.
,
Mahadzir
,
M. A.
, and
Hassan
,
N.
,
2017
, “
Performance Evaluation of Strain Gauge Printed Using Automatic Fluid Dispensing System on Conformal Substrates
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
226
, p.
012019
.
You do not currently have access to this content.