Reactive joining, i.e., utilization of an exothermal reaction to locally generate the heat required for soldering or brazing, represents an emerging technology for flexible and benign joining of heat-sensitive materials, e.g., for microelectromechanical systems (MEMS) applications. However, for successful reactive joining, precise control of heat production and heat distribution is mandatory in order to avoid damaging of the components during the process. For the exemplary case of borosilicate glass, the reactive joining process for a both thermally and mechanically sensitive material is developed. Employing various nondestructive and destructive testing methods, typical problems which can occur upon reactive joining are identified, e.g., exposure of the joining zone to excessive temperatures, experience of thermal shock by the substrate due to sudden temperature increase, and generation of residual stresses in substrate and soldering zone. Utilizing the results of nondestructive and destructive testing, procedures for successful reactive joining of borosilicate glass, silicon and aluminum oxide are provided.

References

References
1.
The ITRS committee,
2015
, “
The International Technology Roadmap for Semiconductors 2.0
,” The ITRS committee, accessed Aug. 3, 2018, http://www.itrs2.net/
2.
Adams
,
D. P.
,
2015
, “
Reactive Multilayers Fabricated by Vapor Deposition: A Critical Review
,”
Thin Solid Films
,
576
, pp.
98
128
.
3.
Wang
,
J.
,
Besnoin
,
E.
,
Duckham
,
A.
,
Spey
,
S. J.
,
Reiss
,
M. E.
,
Knio
,
O. M.
, and
Weihs
,
T. P.
,
2004
, “
Joining of Stainless-Steel Specimens With Nanostructured Al/Ni Foils
,”
J. Appl. Phys.
,
95
(
1
), pp.
248
256
.
4.
Duckham
,
A.
,
Spey
,
S. J.
,
Wang
,
J.
,
Reiss
,
M. E.
,
Weihs
,
T. P.
,
Besnoin
,
E.
, and
Knio
,
O. M.
,
2004
, “
Reactive Nanostructured Foil Used as a Heat Source for Joining Titanium
,”
J. Appl. Phys.
,
96
(
4
), pp.
2336
2342
.
5.
Qiu
,
X.
, and
Wang
,
J.
,
2008
, “
Bonding Silicon Wafers With Reactive Multilayer Foils
,”
Sens. Actuators A
,
141
(
2
), pp.
476
481
.
6.
Braeuer
,
J.
,
Besser
,
J.
,
Tomoscheit
,
E.
,
Klimm
,
D.
,
Anbumani
,
S.
,
Wiemer
,
M.
, and
Gessner
,
T.
,
2013
, “
Investigation of Different Nano Scale Energetic Material Systems for Reactive Wafer Bonding
,”
ECS Trans
,
50
(
7
), pp.
241
251
.http://ecst.ecsdl.org/content/50/7/241.abstract
7.
Wang
,
J.
,
Besnoin
,
E.
,
Knio
,
O. M.
, and
Weihs
,
T. P.
,
2005
, “
Effects of Physical Properties of Components on Reactive Nanolayer Joining
,”
J. Appl. Phys.
,
97
(
11
), p.
114307
.
8.
Masser
,
R.
,
Braeuer
,
J.
, and
Gessner
,
T.
,
2014
, “
Modelling the Reaction Behavior in Reactive Multilayer Systems on Substrates Used for Wafer Bonding
,”
J. Appl. Phys.
,
115
(
24
), p.
244311
.
9.
Hooper
,
R. J.
,
Davis
,
C. G.
,
Johns
,
P. M.
,
Adams
,
D. P.
,
Hirschfeld
,
D.
,
Nino
,
J. C.
, and
Manuel
,
M. V.
,
2015
, “
Prediction and Characterization of Heat-Affected Zone Formation in Tin-Bismuth Alloys Due to Nickel-Aluminum Multilayer Foil Reaction
,”
J. Appl. Phys.
,
117
(
24
), p.
245104
.
10.
Longtin
,
R.
,
Hack
,
E.
,
Neuenschwander
,
J.
, and
Janczak-Rusch
,
J.
,
2011
, “
Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology
,”
Adv. Mater
,
23
(
48
), pp.
5812
5816
.
11.
Namazu
,
T.
,
Takemoto
,
H.
,
Fujita
,
H.
,
Nagai
,
Y.
, and
Inoue
,
S.
,
2006
, “
Self-Propagating Explosive Reactions in Nanostructured Al/Ni Multilayer Films as a Localized Heat Process Technique for Mems
,”
19th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
), Istanbul, Turkey, Jan. 22–26, pp.
286
289
.
12.
Schumacher
,
A.
,
2015
, “
Montage Von Mikrosystemen Mit Reaktivem Nanofügen in Einer Fertigungsprozesskette (ReMTeC), Abschlussbericht
,” Hahn-Schickard Gesellschaft, Villingen-Schwenningen, Germany, Technical Report.
13.
Ho
,
C. E.
,
Tsai
,
R. Y.
,
Lin
,
Y. L.
, and
Kao
,
C. R.
,
2002
, “
Effect of Cu Concentration on the Reactions Between Sn-Ag-Cu Solders and Ni
,”
J. Electron. Mater
,
31
(
6
), pp.
584
590
.
14.
Spies
,
I.
,
Schumacher
,
A.
,
Knappmann
,
S.
,
Rheingans
,
B.
,
Janczak-Rusch
,
J.
, and
Jeurgens
,
L. P. H.
,
2017
, “
Acceleration Measurements During Reactive Bonding Processes
,” 21st European Microelectronics and Packaging Conference (
EMPC
) & Exhibition, Warsaw, Poland, Sept. 10–13, pp. 1–6.
15.
SCHOTT Technical Glass Solutions GmbH
,
2014
, “
BOROFLOAT® 33—Thermal Properties, Mechanical Properties
,” SCHOTT Technical Glass Solutions GmbH, Jena, Germany, accessed Aug. 3, 2018, www.schott.com
16.
Deshpande
,
V. T.
, and
Sirdeshmukh
,
D. B.
,
1961
, “
Thermal Expansion of Tetragonal Tin
,”
Acta Crystallogr.
,
14
(
4
), pp.
355
356
.
17.
Wang
,
Y.
,
Liu
,
Z. K.
, and
Chen
,
L. Q.
,
2004
, “
Thermodynamic Properties of Al, Ni, NiAl, and Ni3Al From First-Principles Calculations
,”
Acta Mater.
,
52
(
9
), pp.
2665
2671
.
You do not currently have access to this content.