Since it is highly correlated with quality of life, the demand for energy continues to increase as the global population grows and modernizes. Although there has been significant impetus to move away from reliance on fossil fuels for decades (e.g., localized pollution and climate change), solar energy has only recently taken on a non-negligible role in the global production of energy. The photovoltaics (PV) industry has many of the same electronics packaging challenges as the semiconductor industry, because in both cases, high temperatures lead to lowering of the system performance. Also, there are several technologies, which can harvest solar energy solely as heat. Advances in these technologies (e.g., solar selective coatings, design optimizations, and improvement in materials) have also kept the solar thermal market growing in recent years (albeit not nearly as rapidly as PV). This paper presents a review on how heat is managed in solar thermal and PV systems, with a focus on the recent developments for technologies, which can harvest heat to meet global energy demands. It also briefs about possible ways to resolve the challenges or difficulties existing in solar collectors like solar selectivity, thermal stability, etc. As a key enabling technology for reducing radiation heat losses in these devices, the focus of this paper is to discuss the ongoing advances in solar selective coatings and working fluids, which could potentially be used in tandem to filter out or recover the heat that is wasted from PVs. Among the reviewed solar selective coatings, recent advances in selective coating categories like dielectric-metal-dielectric (DMD), multilayered, and cermet-based coatings are considered. In addition, the effects of characteristic changes in glazing, absorber geometry, and solar tracking systems on the performance of solar collectors are also reviewed. A discussion of how these fundamental technological advances could be incorporated with PVs is included as well.

References

References
1.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
2.
McGrath
,
D.
,
2017
, “
Wafer Shipments Forecast to Rise Through 2019
,” EE Times, San Francisco, CA, accessed May 4, 2018 https://www.eetimes.com/document.asp?doc_id=1332470.
3.
Derbyshire
,
K.
,
2011
, “
How Do PV and IC Silicon Markets Compare?
,”
Semicond. Eng.
(epub).http://semiengineering.com/how-do-pv-and-ic-silicon-markets-compare/
4.
Agrawal
,
B.
, and
Tiwari
,
G. N.
,
2010
, “
Optimizing the Energy and Exergy of Building Integrated Photovoltaic Thermal (BIPVT) Systems Under Cold Climatic Conditions
,”
Appl. Energy
,
87
(
2
), pp.
417
426
.
5.
Fleischer
,
K.
,
Arca
,
E.
, and
Shvets
,
I. V.
,
2012
, “
Improving Solar Cell Efficiency With Optically Optimised TCO Layers
,”
Sol. Energy Mater. Sol. Cells
,
101
, pp.
262
269
.
6.
Hjerrild
,
N. E.
, and
Taylor
,
R. A.
,
2017
, “
Boosting Solar Energy Conversion With Nanofluids
,”
Phys. Today
,
70
(
12
), pp.
40
45
.
7.
Crisostomo
,
F.
,
Taylor
,
R. A.
,
Zhang
,
T.
,
Perez-Wurfl
,
I.
,
Rosengarten
,
G.
,
Everett
,
V.
, and
Hawkes
,
E. R.
,
2014
, “
Experimental Testing of SiNx/SiO2thin Film Filters for a Concentrating Solar Hybrid PV/T Collector
,”
Renewable Energy
,
72
, pp.
79
87
.
8.
Abdin
,
Z.
,
Alim
,
M. A.
,
Saidur
,
R.
,
Islam
,
M. R.
,
Rashmi
,
W.
,
Mekhilef
,
S.
, and
Wadi
,
A.
,
2013
, “
Solar Energy Harvesting With the Application of Nanotechnology
,”
Renewable Sustainable Energy Rev.
,
26
, pp.
837
852
.
9.
Benick
,
J.
,
Richter
,
A.
,
Müller
,
R.
,
Hauser
,
H.
,
Feldmann
,
F.
,
Krenckel
,
P.
,
Riepe
,
S.
,
Schindler
,
F.
,
Schubert
,
M. C.
,
Hermle
,
M.
,
Bett
,
A. W.
, and
Glunz
,
S. W.
,
2017
, “
High-Efficiency n-Type HP Mc Silicon Solar Cells
,”
IEEE J. Photovolt.
,
7
(
5
), pp.
1171
1175
.
10.
Fraunhofer Group,
2018
, “
Fraunhofer Institute for Solar Energy Systems—ISE
,” Fraunhofer ISE, Baden-Württemberg, Germany, accessed Aug. 28, 2018, https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
11.
Kwan
,
T. H.
, and
Wu
,
X.
,
2016
, “
Power and Mass Optimization of the Hybrid Solar Panel and Thermoelectric Generators
,”
Appl. Energy
,
165
, pp.
297
307
.
12.
Tianze
,
L.
,
Hengwei
,
L.
,
Chuan
,
J.
,
Luan
,
H.
, and
Xia
,
Z.
,
2011
, “
Application and Design of Solar Photovoltaic System
,”
J. Phys.: Conf. Ser.
,
276
(1), p. 012175.http://iopscience.iop.org/article/10.1088/1742-6596/276/1/012175/pdf
13.
Parida
,
B.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2011
, “
A Review of Solar Photovoltaic Technologies
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1625
1636
.
14.
Zhang
,
L.
, and
Chen
,
Z.
,
2017
, “
Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT) System
,”
Energies
,
10
(
4
), p. 507.
15.
Bogue
,
R.
,
2012
, “
Solar-Powered Sensors: A Review of Products and Applications
,”
Sens. Rev.
,
32
(
2
), pp.
95
100
.
16.
Ben Belghith
,
O.
, and
Sbita
,
L.
,
2014
, “
Remote GSM Module Monitoring and Photovoltaic System Control
,” First International Conference on Green Energy (
ICGE 2014
), Sfax, Tunisia, Mar. 25–27, pp.
188
192
.
17.
Meah
,
K.
,
Fletcher
,
S.
, and
Ula
,
S.
,
2008
, “
Solar Photovoltaic Water Pumping for Remote Locations
,”
Renewable Sustainable Energy Rev.
,
12
(
2
), pp.
472
487
.
18.
Mokeddem
,
A.
,
Midoun
,
A.
,
Kadri
,
D.
,
Hiadsi
,
S.
, and
Raja
,
I. A.
,
2011
, “
Performance of a Directly-Coupled PV Water Pumping System
,”
Energy Convers. Manage.
,
52
(
10
), pp.
3089
3095
.
19.
Hussein
,
A. A.
, and
Fardoun
,
A. A.
,
2015
, “
Design Considerations and Performance Evaluation of Outdoor PV Battery Chargers
,”
Renewable Energy
,
82
, pp.
85
91
.
20.
Boico
,
F.
,
Lehman
,
B.
, and
Shujaee
,
K.
,
2007
, “
Solar Battery Charger for NiMH Batteries
,”
IEEE Trans. Power Electron.
,
5
, pp.
1600
1609
.
21.
Kuperman
,
A.
,
Sitbon
,
M.
,
Gadelovits
,
S.
,
Averbukh
,
M.
, and
Suntio
,
T.
,
2015
, “
Single-Source Multibattery Solar Charger: Case Study and Implementation Issues
,”
Energies
,
8
(
12
), pp.
1916
1928
.
22.
Koutroulis
,
E.
, and
Kalaitzakis
,
K.
,
2003
, “
Novel Battery Charging Regulation System for Photovoltaic Applications
,”
IEE Proc. Electr Power Appl.
,
151
(
2
), pp.
191
197
.
23.
Nasiri
,
A.
,
Zabalawi
,
S. A.
, and
Mandic
,
G.
,
2009
, “
Indoor Power Harvesting Using Photovoltaic Cells for Low Power Applications
,”
IEEE Trans. Ind. Electron.
,
56
(
11
), pp.
4502
4509
.
24.
Sukhatme
,
S.
, and
Nayak
,
J.
,
1996
,
Solar Energy
,
Tata McGraw-Hill Education
, New York.
25.
Bany Mousa
,
O. M.
, and
Taylor
,
R. A.
,
2018
, “
A Broad Comparison of Solar Photovoltaic and Thermal Technologies for Industrial Heating Applications
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011002
.
26.
Nižetić
,
S.
,
Čoko
,
D.
,
Yadav
,
A.
, and
Grubišić-Čabo
,
F.
,
2016
, “
Water Spray Cooling Technique Applied on a Photovoltaic Panel: The Performance Response
,”
Energy Convers. Manage.
,
108
, pp.
287
296
.
27.
Radziemska
,
E.
, and
Klugmann
,
E.
,
2002
, “
Thermally Affected Parameters of the Current-Voltage Characteristics of Silicon Photocell
,”
Energy Convers. Manage.
,
43
(
14
), pp.
1889
1900
.
28.
Green
,
M. A.
,
Hishikawa
,
Y.
,
Warta
,
W.
,
Dunlop
,
E. D.
,
Levi
,
D. H.
,
Hohl-Ebinger
,
J.
, and
Ho-Baillie
,
A. W. H.
,
2017
, “
Solar Cell Efficiency Tables (Version 50)
,”
Prog. Photovolt.: Res. Appl.
, (
7
), pp.
668
676
.
29.
Cappelletti
,
A.
,
Catelani
,
M.
,
Ciani
,
L.
,
Kazimierczuk
,
M. K.
, and
Reatti
,
A.
,
2016
, “
Practical Issues and Characterization of a Photovoltaic/Thermal Linear Focus 20x Solar Concentrator
,”
IEEE Trans. Instrum. Meas.
,
65
(
11
), pp.
2464
2475
.
30.
Hjerrild
,
N. E.
,
Scott
,
J. A.
,
Amal
,
R.
, and
Taylor
,
R. A.
,
2018
, “
Exploring the Effects of Heat and UV Exposure on Glycerol-Based Ag-SiO2nanofluids for PV/T Applications
,”
Renewable Energy
,
120
, pp.
266
274
.
31.
Otanicar
,
T. P.
,
Theisen
,
S.
,
Norman
,
T.
,
Tyagi
,
H.
, and
Taylor
,
R. A.
,
2015
, “
Envisioning Advanced Solar Electricity Generation: Parametric Studies of CPV/T Systems With Spectral Filtering and High Temperature PV
,”
Appl. Energy
,
140
, pp.
224
233
.
32.
Li
,
Q.
,
Shirazi
,
A.
,
Zheng
,
C.
,
Rosengarten
,
G.
,
Scott
,
J. A.
, and
Taylor
,
R. A.
,
2016
, “
Energy Concentration Limits in Solar Thermal Heating Applications
,”
Energy
,
96
, pp. 253–267.
33.
Thebault
,
M.
,
Reizes
,
J.
,
Giroux–Julien
,
S.
,
Timchenko
,
V.
, and
Ménézo
,
C.
,
2018
, “
Impact of External Temperature Distribution on the Convective Mass Flow Rate in a Vertical Channel—A Theoretical and Experimental Study
,”
Int. J. Heat Mass Transfer
,
121
, pp.
1264
1272
.
34.
Cuce
,
E.
,
Bali
,
T.
, and
Sekucoglu
,
S. A.
,
2011
, “
Effects of Passive Cooling on Performance of Silicon Photovoltaic Cells
,”
Int. J. Low-Carbon Technol.
,
6
(
4
), pp.
299
308
.
35.
Cengel
,
Y.
, and
Ghajar
,
A.
,
2011
,
Heat and Mass Transfer
,
McGraw-Hill Education
, New York.
36.
Tonui
,
J. K.
, and
Tripanagnostopoulos
,
Y.
,
2007
, “
Air-Cooled PV/T Solar Collectors With Low Cost Performance Improvements
,”
Sol. Energy
,
81
(
4
), pp.
498
511
.
37.
Shahsavar
,
A.
,
Salmanzadeh
,
M.
,
Ameri
,
M.
, and
Talebizadeh
,
P.
,
2011
, “
Energy Saving in Buildings by Using the Exhaust and Ventilation Air for Cooling of Photovoltaic Panels
,”
Energy Build.
,
43
(
9
), pp.
2219
2226
.
38.
Daghigh
,
R.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2011
, “
Advances in Liquid Based Photovoltaic/Thermal (PV/T) Collectors
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
4156
4170
.
39.
Han
,
X.
,
Guo
,
Y.
,
Wang
,
Q.
, and
Phelan
,
P.
,
2018
, “
Optical Characterization and Durability of Immersion Cooling Liquids for High Concentration III-V Photovoltaic Systems
,”
Sol. Energy Mater. Sol. Cells
,
174
, pp.
124
131
.
40.
Zhang
,
B.
,
Wang
,
Y.
,
Huang
,
Q.
,
Feng
,
J.
,
Cui
,
Y.
, and
Zhang
,
Y.
,
2015
, “
Study on the Performance of Cooling Composite Materials for Liquid-Immersed Concentrating Photovoltaic Systems
,”
Sol. Energy
,
119
, pp.
543
552
.
41.
Sun
,
Y.
,
Wang
,
Y.
,
Zhu
,
L.
,
Yin
,
B.
,
Xiang
,
H.
, and
Huang
,
Q.
,
2014
, “
Direct Liquid-Immersion Cooling of Concentrator Silicon Solar Cells in a Linear Concentrating Photovoltaic Receiver
,”
Energy
,
65
, pp.
264
271
.
42.
Sundarraj
,
P.
,
Taylor
,
R. A.
,
Banerjee
,
D.
,
Maity
,
D.
, and
Roy
,
S. S.
,
2017
, “
Experimental and Theoretical Analysis of a Hybrid Solar Thermoelectric Generator With Forced Convection Cooling
,”
J. Phys. D. Appl. Phys
,
50
(
1
), p.
15501
.
43.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2009
, “
Single-Phase and Two-Phase Hybrid Cooling Schemes for High-Heat-Flux Thermal Management of Defense Electronics
,”
ASME J. Electron. Packag.
,
131
(
2
), pp.
21010
21013
.
44.
Gakkhar
,
N.
,
Soni
,
M. S.
, and
Jakhar
,
S.
,
2016
, “
Analysis of Water Cooling of CPV Cells Mounted on Absorber Tube of a Parabolic Trough Collector
,”
Energy Procedia
,
90
, pp.
78
88
.
45.
Zhu
,
L.
,
Raman
,
A.
,
Wang
,
K. X.
,
Anoma
,
M. A.
, and
Fan
,
S.
,
2014
, “
Radiative Cooling of Solar Cells
,”
Optica
,
1
(
1
), p.
32
.
46.
Mittelman
,
G.
,
Alshare
,
A.
, and
Davidson
,
J. H.
,
2009
, “
A Model and Heat Transfer Correlation for Rooftop Integrated Photovoltaics With a Passive Air Cooling Channel
,”
Sol. Energy
,
83
(
8
), pp.
1150
1160
.
47.
Kecebas
,
M. A.
,
Menguc
,
M. P.
,
Kosar
,
A.
, and
Sendur
,
K.
,
2017
, “
Passive Radiative Cooling Design With Broadband Optical Thin-Film Filters
,”
J. Quant. Spectrosc. Radiat. Transfer
,
198
, pp.
1339
1351
.
48.
Zhu
,
L.
,
Raman
,
A. P.
, and
Fan
,
S.
,
2015
, “
Radiative Cooling of Solar Absorbers Using a Visibly Transparent Photonic Crystal Thermal Blackbody
,”
Proc. Natl. Acad. Sci.
,
112
(
40
), pp.
12282
12287
.
49.
Safi
,
T. S.
, and
Munday
,
J. N.
,
2015
, “
Improving Photovoltaic Performance Through Radiative Cooling in Both Terrestrial and Extraterrestrial Environments
,”
Opt. Express
,
23
(
19
), p.
A1120
.
50.
Gentle
,
A. R.
, and
Smith
,
G. B.
,
2016
, “
Is Enhanced Radiative Cooling of Solar Cell Modules Worth Pursuing?
,”
Sol. Energy Mater. Sol. Cells
,
150
, pp.
39
42
.
51.
Sun
,
X.
,
Silverman
,
T. J.
,
Zhou
,
Z.
,
Khan
,
M. R.
,
Bermel
,
P.
, and
Alam
,
M. A.
,
2017
, “
Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling
,”
IEEE J. Photovolt.
,
7
(
2
), pp.
566
574
.
52.
Li
,
W.
,
Shi
,
Y.
,
Chen
,
K.
,
Zhu
,
L.
, and
Fan
,
S.
,
2017
, “
A Comprehensive Photonic Approach for Solar Cell Cooling
,”
ACS Photonics
,
4
(
4
), pp.
774
782
.
53.
Huang
,
Z.
, and
Ruan
,
X.
,
2017
, “
Nanoparticle Embedded Double-Layer Coating for Daytime Radiative Cooling
,”
Int. J. Heat Mass Transfer
,
104
, pp.
890
896
.
54.
Soo Too
,
Y. C.
,
Diago López
,
M.
,
Cassard
,
H.
,
Duffy
,
G.
,
Benito
,
R.
, and
Navio
,
R.
,
2017
, “
Thermal Performance and Operation of a Solar Tubular Receiver With CO2 as the Heat Transfer Fluid
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041004
.
55.
Phelan
,
P.
,
Otanicar
,
T.
,
Taylor
,
R.
, and
Tyagi
,
H.
,
2013
, “
Trends and Opportunities in Direct-Absorption Solar Thermal Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021003
.
56.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes Solar Engineering
,
Wiley
, Hoboken, NJ.
57.
Bhalla
,
V.
, and
Tyagi
,
H.
,
2018
, “
Parameters Influencing the Performance of Nanoparticles-Laden Fluid-Based Solar Thermal Collectors: A Review on Optical Properties
,”
Renewable Sustainable Energy Rev.
,
84
, pp.
12
42
.
58.
Peterseim
,
J. H.
, and
Veeraragavan
,
A.
,
2015
, “
Solar Towers With Supercritical Steam Parameters—Is the Efficiency Gain Worth the Effort?
,”
Energy Procedia
,
69
(
0
), pp.
1123
1132
.
59.
Kumaresan
,
G.
,
Sudhakar
,
P.
,
Santosh
,
R.
, and
Velraj
,
R.
,
2017
, “
Experimental and Numerical Studies of Thermal Performance Enhancement in the Receiver Part of Solar Parabolic Trough Collectors
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
1363
1374
.
60.
Sandeep
,
H. M.
, and
Arunachala
,
U. C.
,
2017
, “
Solar Parabolic Trough Collectors: A Review on Heat Transfer Augmentation Techniques
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
1218
1231
.
61.
Khelifa
,
A.
,
Touafek
,
K.
,
Boutina
,
L.
, and
Tahar
,
B. M.
,
2018
, “
Theoretical and Experimental Analysis of the Solar Collectors Performances
,”
IET Renew. Power Gener.
,
12
(
7
), pp.
867
873
.
62.
Al Tarabsheh
,
A.
,
Ghazal
,
A.
,
Asad
,
M.
,
Morci
,
Y.
,
Etier
,
I.
,
El Haj
,
A.
, and
Fath
,
H.
,
2016
, “
Performance of Photovoltaic Cells in Photovoltaic Thermal (PVT) Modules
,”
IET Renew. Power Gener.
,
10
(
7
), pp.
1017
1023
.
63.
Ben Cheikh El Hocine
,
H.
,
Touafek
,
K.
, and
Kerrour
,
F.
,
2016
, “
Theoretical and Experimental Studies of a New Configuration of Photovoltaic–Thermal Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021012
.
64.
Crisostomo
,
F.
,
Taylor
,
R. A.
,
Surjadi
,
D.
,
Mojiri
,
A.
,
Rosengarten
,
G.
, and
Hawkes
,
E. R.
,
2015
, “
Spectral Splitting Strategy and Optical Model for the Development of a Concentrating Hybrid PV/T Collector
,”
Appl. Energy
,
141
, pp.
238
246
.
65.
Hu
,
P.
,
Zhang
,
Q.
,
Liu
,
Y.
,
Sheng
,
C.
,
Cheng
,
X.
, and
Chen
,
Z.
,
2013
, “
Optical Analysis of a Hybrid Solar Concentrating Photovoltaic/Thermal (CPV/T) System With Beam Splitting Technique
,”
Sci. China Technol. Sci.
,
56
(
6
), pp.
1387
1394
.
66.
Suman
,
S.
,
Kaleem
,
M.
, and
Pathak
,
M.
,
2015
, “
Performance Enhancement of Solar Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
192
210
.
67.
Kennedy
,
C.
,
2002
, “
Review of Mid- to High-Temperature Solar Selective Absorber Materials
,” National Renewable Energy Lab., Golden, CO, Technical Report No.
NREL/TP-520-31267
.
68.
Kumar
,
R.
, and
Chand
,
P.
,
2017
, “
Performance Enhancement of Solar Air Heater Using Herringbone Corrugated Fins
,”
Energy
,
127
, pp.
271
279
.
69.
Khullar
,
V.
,
Singh
,
H.
, and
Tyagi
,
H.
,
2018
, “
Direct Absorption Solar Thermal Technologies
,”
Applications of Solar Energy, Springer
,
H.
Tyagi
,
A.
Agarwal
,
P.
Chakraborty
, and
S.
Powar
, eds.,
Springer
, Berlin, Germany, pp.
81
97
.
70.
Kennedy
,
C. E.
, and
Price
,
H.
,
2005
, “
Progress in Development of High-Temperature Solar-Selective Coating
,”
ASME
Paper No. ISEC2005-76039.
71.
Fang
,
X.
,
Zhao
,
C. Y.
, and
Bao
,
H.
,
2016
, “
Study on a Novel Selective Solar Absorber With Surface Ultrathin Metal Film
,”
ASME
Paper No. MNHMT2016-6584.
72.
Fan
,
J. C.
, and
Bachner
,
F. J.
,
1976
, “
Transparent Heat Mirrors for Solar-Energy Applications
,”
Appl. Opt
,
15
(
4
), pp.
1012
1017
.
73.
Khullar
,
V.
,
Tyagi
,
H.
,
Otanicar
,
T.
,
Hewakuruppu
,
Y.
, and
Taylor
,
R.
,
2018
, “
Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy
,”
ASME J. Heat Transfer.
,
140
(6), p. 062702.
74.
Giovannetti
,
F.
,
Föste
,
S.
,
Ehrmann
,
N.
, and
Rockendorf
,
G.
,
2014
, “
High Transmittance, Low Emissivity Glass Covers for Flat Plate Collectors: Applications and Performance
,”
Sol. Energy
,
104
, pp.
52
59
.
75.
Gomez-garcia
,
F.
,
González-aguilar
,
J.
,
Olalde
,
G.
, and
Romero
,
M.
,
2016
, “
Thermal and Hydrodynamic Behavior of Ceramic Volumetric Absorbers for Central Receiver Solar Power Plants: A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
648
658
.
76.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.
77.
Bisht
,
V. S.
,
Patil
,
A. K.
, and
Gupta
,
A.
,
2018
, “
Review and Performance Evaluation of Roughened Solar Air Heaters
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
954
977
.
78.
Dan
,
A.
,
Barshilia
,
H. C.
,
Chattopadhyay
,
K.
, and
Basu
,
B.
,
2017
, “
Solar Energy Absorption Mediated by Surface Plasma Polaritons in Spectrally Selective Dielectric-Metal-Dielectric Coatings: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1050
1077
.
79.
Sani
,
E.
,
Mercatelli
,
L.
,
Francini
,
F.
,
Sans
,
J. L.
, and
Sciti
,
D.
,
2011
, “
Ultra-Refractory Ceramics for High-Temperature Solar Absorbers
,”
Scr. Mater.
,
65
(
9
), pp.
775
778
.
80.
Nuru
,
Z. Y.
,
Motaung
,
D. E.
,
Kaviyarasu
,
K.
, and
Maaza
,
M.
,
2016
, “
Optimization and Preparation of Pt-Al2O3double Cermet as Selective Solar Absorber Coatings
,”
J. Alloys Compd.
,
664
, pp.
161
168
.
81.
Cao
,
F.
,
Mcenaney
,
K.
,
Chen
,
G.
, and
Ren
,
Z.
,
2014
, “
Environmental Science a Review of Cermet-Based Spectrally Selective Solar Absorbers
,”
Energy Environ. Sci.
,
7
(
5
), pp.
1615
1627
.
82.
Atkinson
,
C.
,
Sansom
,
C. L.
,
Almond
,
H. J.
, and
Shaw
,
C. P.
,
2015
, “
Coatings for Concentrating Solar Systems—A Review
,”
Renewable Sustainable Energy Rev.
,
45
, pp.
113
122
.
83.
Jyothi
,
J.
,
Chaliyawala
,
H.
,
Srinivas
,
G.
,
Nagaraja
,
H. S.
, and
Barshilia
,
H. C.
,
2015
, “
Design and Fabrication of Spectrally Selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO Tandem Absorber for High-Temperature Solar Thermal Power Applications
,”
Sol. Energy Mater. Sol. Cells
,
140
, pp.
209
216
.
84.
Joly
,
M.
,
Bouvard
,
O.
,
Gascou
,
T.
,
Antonetti
,
Y.
,
Python
,
M.
,
González Lazo
,
M. A.
,
Loesch
,
P.
,
Hessler-Wyser
,
A.
, and
Schüler
,
A.
,
2015
, “
Optical and Structural Analysis of Sol-Gel Derived Cu-Co-Mn-Si Oxides for Black Selective Solar Nanocomposite Multilayered Coatings
,”
Sol. Energy Mater. Sol. Cells
,
143
, pp.
573
580
.
85.
Jain
,
R.
, and
Pitchumani
,
R.
,
2017
, “
Fabrication and Characterization of Multiscale, Fractal Textured Solar Selective Coatings
,”
Sol. Energy Mater. Sol. Cells
,
172
, pp.
213
219
.
86.
Forbes
,
L.
,
2012
, “
Texturing, Reflectivity, Diffuse Scattering and Light Trapping in Silicon Solar Cells
,”
Sol. Energy
,
86
(
1
), pp.
319
325
.
87.
Karoro
,
A.
,
Nuru
,
Z. Y.
,
Kotsedi
,
L.
,
Bouziane
,
K.
,
Mothudi
,
B. M.
, and
Maaza
,
M.
,
2015
, “
Laser Nanostructured Co Nanocylinders-Al2O3cermets for Enhanced & Flexible Solar Selective Absorbers Applications
,”
Appl. Surf. Sci.
,
347
, pp.
679
684
.
88.
Gorji
,
T. B.
, and
Ranjbar
,
A. A.
,
2017
, “
A Review on Optical Properties and Application of Nanofluids in Direct Absorption Solar Collectors (DASCs)
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
10
32
.
89.
Khullar
,
V.
,
Bhalla
,
V.
, and
Tyagi
,
H.
,
2017
, “
Potential Heat Transfer Fluids (Nanofluids) for Direct Volumetric Absorption-Based Solar Thermal Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011009
.
90.
Razykov
,
T. M.
,
Ferekides
,
C. S.
,
Morel
,
D.
,
Stefanakos
,
E.
,
Ullal
,
H. S.
, and
Upadhyaya
,
H. M.
,
2011
, “
Solar Photovoltaic Electricity: Current Status and Future Prospects
,”
Sol. Energy
,
85
(
8
), pp.
1580
1608
.
91.
Taylor
,
R. A.
,
Hewakuruppu
,
Y.
,
DeJarnette
,
D.
, and
Otanicar
,
T. P.
,
2016
, “
Comparison of Selective Transmitters for Solar Thermal Applications
,”
Appl. Opt.
,
55
(
14
), pp.
3829
3839
.
92.
Szyszka
,
B.
,
Dewald
,
W.
,
Gurram
,
S. K.
,
Pflug
,
A.
,
Schulz
,
C.
,
Siemers
,
M.
,
Sittinger
,
V.
, and
Ulrich
,
S.
,
2012
, “
Recent Developments in the Field of Transparent Conductive Oxide Films for Spectral Selective Coatings, Electronics and Photovoltaics
,”
Curr. Appl. Phys.
,
12
(
Suppl. 4
), pp.
2
11
.
93.
Granqvist
,
C. G.
,
2007
, “
Transparent Conductors as Solar Energy Materials: A Panoramic Review
,”
Sol. Energy Mater. Sol. Cells
,
91
(
17
), pp.
1529
1598
.
94.
Selvakumar
,
N.
, and
Barshilia
,
H. C.
,
2012
, “
Review of Physical Vapor Deposited (PVD) Spectrally Selective Coatings for Mid- and High-Temperature Solar Thermal Applications
,”
Sol. Energy Mater. Sol. Cells
,
98
, pp.
1
23
.
95.
Selvakumar
,
N.
,
Barshilia
,
H. C.
,
Rajam
,
K. S.
, and
Biswas
,
A.
,
2010
, “
Structure, Optical Properties and Thermal Stability of Pulsed Sputter Deposited High Temperature HfOx/Mo/HfO2 Solar Selective Absorbers
,”
Sol. Energy Mater. Sol. Cells
,
94
(
8
), pp.
1412
1420
.
96.
Nuru
,
Z. Y.
,
Msimanga
,
M.
,
Muller
,
T. F. G.
,
Arendse
,
C. J.
,
Mtshali
,
C.
, and
Maaza
,
M.
,
2015
, “
Microstructural, Optical Properties and Thermal Stability of MgO/Zr/MgO Multilayered Selective Solar Absorber Coatings
,”
Sol. Energy
,
111
, pp.
357
363
.
97.
Khelifa
,
A. B.
,
Khamlich
,
S.
,
Nuru
,
Z. Y.
,
Kotsedi
,
L.
,
Mebrahtu
,
A.
,
Balgouthi
,
M.
,
Guizani
,
A. A.
,
Dimassi
,
W.
, and
Maaza
,
M.
,
2018
, “
Growth and Characterization of Spectrally Selective Cr2O3/Cr/Cr2O3multilayered Solar Absorber by e-Beam Evaporation
,”
J. Alloys Compd.
,
734
, pp.
204
209
.
98.
Shah
,
A. A.
,
Ungaro
,
C.
, and
Gupta
,
M. C.
,
2015
, “
High Temperature Spectral Selective Coatings for Solar Thermal Systems by Laser Sintering
,”
Sol. Energy Mater. Sol. Cells
,
134
, pp.
209
214
.
99.
Sani
,
E.
,
Mercatelli
,
L.
,
Sansoni
,
P.
,
Silvestroni
,
L.
, and
Sciti
,
D.
,
2012
, “
Spectrally Selective Ultra-High Temperature Ceramic Absorbers for High-Temperature Solar Plants
,”
J. Renewable Sustainable Energy Rev.
,
4
(
3
), p.
33104
.
100.
Ding
,
D.
,
Cai
,
W.
,
Long
,
M.
,
Wu
,
H.
, and
Wu
,
Y.
,
2010
, “
Optical, Structural and Thermal Characteristics of Cu–CuAl2O4 Hybrids Deposited in Anodic Aluminum Oxide as Selective Solar Absorber
,”
Sol. Energy Mater. Sol. Cells
,
94
(
10
), pp.
1578
1581
.
101.
Agnihotri
,
O. P.
, and
Gupta
,
B. K.
,
1981
,
Solar Selective Surfaces
, 1st ed.,
Wiley-Interscience
,
New York
, p.
232
.
102.
Seraphin
,
B. O.
,
1976
, “
Chemical Vapor Deposition of Thin Semiconductor Films for Solar Energy Conversion
,”
Thin Solid Films
,
39
, pp.
87
94
.
103.
Wang
,
K. K.
,
Wu
,
Z. Z.
,
Peng
,
C. J.
,
Wang
,
K. P.
,
Cheng
,
B.
,
Song
,
C. L.
,
Han
,
G. R.
, and
Liu
,
Y.
,
2015
, “
A Facile Process to Prepare Crosslinked Nano-Graphites Uniformly Dispersed in Titanium Oxide Films as Solar Selective Absorbers
,”
Sol. Energy Mater. Sol. Cells
,
143
, pp.
198
204
.
104.
Moon
,
J.
,
Lu
,
D.
,
VanSaders
,
B.
,
Kim
,
T. K.
,
Kong
,
S. D.
,
Jin
,
S.
,
Chen
,
R.
, and
Liu
,
Z.
,
2014
, “
High Performance Multi-Scaled Nanostructured Spectrally Selective Coating for Concentrating Solar Power
,”
Nano Energy
,
8
, pp.
238
246
.
105.
Barshilia
,
H. C.
,
2014
, “
Solar Selective Coating Having High Thermal Stability and a Process for the Preparation Thereof
,” Council of Scientific and Industrial Research (CSIR) , New Delhi, India, U.S. Patent No.
US9803891B2
.https://patents.google.com/patent/US9803891B2/en
106.
Granqvist
,
C. G.
,
1987
, “
Spectrally Selective Surfaces for Heating and Cooling Applications
,”
Physics and Technology of Solar Energy
,
Springer
,
Dordrecht, The Netherlands
, pp.
191
276
.
107.
Nuru
,
Z. Y.
,
Perez
,
D.
,
Kaviyarasu
,
K.
,
Vantomme
,
A.
, and
Maaza
,
M.
,
2015
, “
Annealing Effect on the Optical Properties and Interdiffusion of MgO/Zr/MgO Multilayered Selective Solar Absorber Coatings
,”
Sol. Energy
,
120
, pp.
123
130
.
108.
Nuru
,
Z. Y.
,
Arendse
,
C. J.
,
Khamlich
,
S.
,
Kotsedi
,
L.
, and
Maaza
,
M.
,
2014
, “
A Tantalum Diffusion Barrier Layer to Improve the Thermal Stability of AlxOy/Pt/AlxOy Multilayer Solar Absorber
,”
Sol. Energy
,
107
, pp.
89
96
.
109.
Nuru
,
Z. Y.
,
Arendse
,
C. J.
,
Muller
,
T. F.
,
Khamlich
,
S.
, and
Maaza
,
M.
,
2014
, “
Thermal Stability of Electron Beam Evaporated AlxOy/Pt/AlxOy Multilayer Solar Absorber Coatings
,”
Sol. Energy Mater. Sol. Cells
,
120
(
Pt. B
), pp.
473
480
.
110.
Sibin
,
K. P.
,
John
,
S.
, and
Barshilia
,
H. C.
,
2015
, “
Control of Thermal Emittance of Stainless Steel Using Sputtered Tungsten Thin Films for Solar Thermal Power Applications
,”
Sol. Energy Mater. Sol. Cells
,
133
, pp.
1
7
.
111.
Dan
,
A.
,
Jyothi
,
J.
,
Chattopadhyay
,
K.
,
Barshilia
,
H. C.
, and
Basu
,
B.
,
2016
, “
Spectrally Selective Absorber Coating of WAlN/WAlON/Al2O3for Solar Thermal Applications
,”
Sol. Energy Mater. Sol. Cells
,
157
, pp.
716
726
.
112.
Dan
,
A.
,
Chattopadhyay
,
K.
,
Barshilia
,
H. C.
, and
Basu
,
B.
,
2016
, “
Angular Solar Absorptance and Thermal Stability of W/WAlN/WAlON/Al2O3-Based Solar Selective Absorber Coating
,”
Appl. Therm. Eng.
,
109
, pp.
997
1002
.
113.
Dan
,
A.
,
Chattopadhyay
,
K.
,
Barshilia
,
H. C.
, and
Basu
,
B.
,
2016
, “
Colored Selective Absorber Coating With Excellent Durability
,”
Thin Solid Films
,
620
, pp.
17
22
.
114.
Selvakumar
,
N.
,
Manikandanath
,
N. T.
,
Biswas
,
A.
, and
Barshilia
,
H. C.
,
2012
, “
Design and Fabrication of Highly Thermally Stable HfMoN/HfON/Al2O3 Tandem Absorber for Solar Thermal Power Generation Applications
,”
Sol. Energy Mater. Sol. Cells
,
102
, pp.
86
92
.
115.
Mahadik
,
D. B.
,
Lakshmi
,
R. V.
, and
Barshilia
,
H. C.
,
2015
, “
High Performance Single Layer Nano-Porous Antireflection Coatings on Glass by Sol-Gel Process for Solar Energy Applications
,”
Sol. Energy Mater. Sol. Cells
,
140
, pp.
61
68
.
116.
Khamlich
,
S.
,
McCrindle
,
R.
,
Nuru
,
Z. Y.
,
Cingo
,
N.
, and
Maaza
,
M.
,
2013
, “
Annealing Effect on the Structural and Optical Properties of Cr/α-Cr2O3 Monodispersed Particles Based Solar Absorbers
,”
Appl. Surf. Sci.
,
265
, pp.
745
749
.
117.
Wang
,
H.
,
Prasad Sivan
,
V.
,
Mitchell
,
A.
,
Rosengarten
,
G.
,
Phelan
,
P.
, and
Wang
,
L.
,
2015
, “
Highly Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting
,”
Sol. Energy Mater. Sol. Cells
,
137
, pp.
235
242
.
118.
Wu
,
Y.
,
Wang
,
C.
,
Sun
,
Y.
,
Ning
,
Y.
,
Liu
,
Y.
,
Xue
,
Y.
,
Wang
,
W.
,
Zhao
,
S.
,
Tomasella
,
E.
, and
Bousquet
,
A.
,
2015
, “
Study on the Thermal Stability of Al/NbTiSiN/NbTiSiON/SiO2 Solar Selective Absorbing Coating
,”
Sol. Energy
,
119
, pp.
18
28
.
119.
Wu
,
Y.
,
Wang
,
C.
,
Sun
,
Y.
,
Xue
,
Y.
,
Ning
,
Y.
,
Wang
,
W.
,
Zhao
,
S.
,
Tomasella
,
E.
, and
Bousquet
,
A.
,
2015
, “
Optical Simulation and Experimental Optimization of Al/NbMoN/NbMoON/SiO2solar Selective Absorbing Coatings
,”
Sol. Energy Mater. Sol. Cells
,
134
, pp.
373
380
.
120.
Song
,
P.
,
Wu
,
Y.
,
Wang
,
L.
,
Sun
,
Y.
,
Ning
,
Y.
,
Zhang
,
Y.
,
Dai
,
B.
,
Tomasella
,
E.
,
Bousquet
,
A.
, and
Wang
,
C.
,
2017
, “
The Investigation of Thermal Stability of Al/NbMoN/NbMoON/SiO2 solar Selective Absorbing Coating
,”
Sol. Energy Mater. Sol. Cells
,
171
, pp.
253
257
.
121.
Oyinlola
,
M. A.
,
Shire
,
G. S. F.
, and
Moss
,
R. W.
,
2015
, “
Investigating the Effects of Geometry in Solar Thermal Absorber Plates With Micro-Channels
,”
Int. J. Heat Mass Transfer
,
90
, pp.
552
560
.
122.
Du
,
D.
,
Darkwa
,
J.
, and
Kokogiannakis
,
G.
,
2013
, “
Thermal Management Systems for Photovoltaics (PV) Installations: A Critical Review
,”
Sol. Energy
,
97
, pp.
238
254
.
123.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Thermal Enhancement of Parabolic Trough Collector With Internally Finned Absorbers
,”
Sol. Energy
,
157
, pp.
514
531
.
124.
Demagh
,
Y.
,
Bordja
,
I.
,
Kabar
,
Y.
, and
Benmoussa
,
H.
,
2015
, “
A Design Method of an S-Curved Parabolic Trough Collector Absorber With a Three-Dimensional Heat Flux Density Distribution
,”
Sol. Energy
,
122
, pp.
873
884
.
125.
Pavlovic
,
S.
,
Bellos
,
E.
,
Le Roux
,
W. G.
,
Stefanovic
,
V.
, and
Tzivanidis
,
C.
,
2017
, “
Experimental Investigation and Parametric Analysis of a Solar Thermal Dish Collector With Spiral Absorber
,”
Appl. Therm. Eng.
,
121
, pp.
126
135
.
126.
Samuel Hansen
,
R.
, and
Kalidasa Murugavel
,
K.
,
2017
, “
Enhancement of Integrated Solar Still Using Different New Absorber Configurations: An Experimental Approach
,”
Desalination
,
422
, pp.
59
67
.
127.
Velmurugan
,
V.
,
Gopalakrishnan
,
M.
,
Raghu
,
R.
, and
Srithar
,
K.
,
2008
, “
Single Basin Solar Still With Fin for Enhancing Productivity
,”
Energy Convers. Manage.
,
49
(
10
), pp.
2602
2608
.
128.
Arunkumar
,
T.
,
Vinothkumar
,
K.
,
Ahsan
,
A.
,
Jayaprakash
,
R.
, and
Kumar
,
S.
,
2012
, “
Experimental Study on Various Solar Still Designs
,”
ISRN Renew. Energy
,
2012
, p. 569381.
129.
Ayoub
,
G. M.
,
Al-Hindi
,
M.
, and
Malaeb
,
L.
,
2015
, “
A Solar Still Desalination System With Enhanced Productivity
,”
Desalin. Water Treat.
,
53
(
12
), pp.
3179
3186
.
130.
Jaurker
,
A. R.
,
Saini
,
J. S.
, and
Gandhi
,
B. K.
,
2006
, “
Heat Transfer and Friction Characteristics of Rectangular Solar Air Heater Duct Using Rib-Grooved Artificial Roughness
,”
Sol. Energy
,
80
(
8
), pp.
895
907
.
131.
Ansari
,
M.
, and
Bazargan
,
M.
,
2018
, “
Optimization of Flat Plate Solar Air Heaters With Ribbed Surfaces
,”
Appl. Therm. Eng.
,
136
, pp.
356
363
.
132.
Kumar
,
R.
,
Varun
., and
Kumar
,
A.
,
2017
, “
Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041013
.
133.
Skullong
,
S.
,
Promvonge
,
P.
,
Thianpong
,
C.
,
Jayranaiwachira
,
N.
, and
Pimsarn
,
M.
,
2017
, “
Heat Transfer Augmentation in a Solar Air Heater Channel With Combined Winglets and Wavy Grooves on Absorber Plate
,”
Appl. Therm. Eng.
,
122
, pp.
268
284
.
134.
Chamoli
,
S.
,
Lu
,
R.
,
Xu
,
D.
, and
Yu
,
P.
,
2018
, “
Thermal Performance Improvement of a Solar Air Heater Fitted With Winglet Vortex Generators
,”
Sol. Energy
,
159
, pp.
966
983
.
135.
Pandey
,
N. K.
,
Bajpai
,
V. K.
, and
Varun
,
2016
, “
Experimental Investigation of Heat Transfer Augmentation Using Multiple Arcs With Gap on Absorber Plate of Solar Air Heater
,”
Sol. Energy
,
134
, pp.
314
326
.
136.
Kaminski
,
P. M.
,
Womack
,
G.
, and
Walls
,
J. M.
,
2014
, “
Broadband Anti-Reflection Coatings for Thin Film Photovoltaics
,”
IEEE
40th Photovoltaic Specialist Conference
(PVSC), Denver, CO, June 8–13, pp.
2778
2783
.
137.
Nostell
,
P.
,
Roos
,
A.
, and
Karlsson
,
B.
,
1998
, “
Antireflection of Glazings for Solar Energy Applications
,”
Sol. Energy Sol. Cells
,
54
(
1–4
), pp.
223
233
.
138.
Nostell
,
P.
,
Roos
,
A.
, and
Karlsson
,
B.
,
1999
, “
Optical and Mechanical Properties of Sol-Gel Antireflective Films for Solar Energy Applications
,”
Thin Solid Films
,
351
(
1–2
), pp.
170
175
.
139.
Hody-Le Caër
,
V.
,
De Chambrier
,
E.
,
Mertin
,
S.
,
Joly
,
M.
,
Schaer
,
M.
,
Scartezzini
,
J. L.
, and
Schüler
,
A.
,
2013
, “
Optical and Morphological Characterisation of Low Refractive Index Materials for Coatings on Solar Collector Glazing
,”
Renewable Energy
,
53
, pp.
27
34
.
140.
Youcef-Ali
,
S.
,
2005
, “
Study and Optimization of the Thermal Performances of the Offset Rectangular Plate Fin Absorber Plates, With Various Glazing
,”
Renewable Energy
,
30
(
2
), pp.
271
280
.
141.
Schüler
,
A.
,
Boudaden
,
J.
,
Oelhafen
,
P.
,
De Chambrier
,
E.
,
Roecker
,
C.
, and
Scartezzini
,
J. L.
,
2005
, “
Thin Film Multilayer Design Types for Colored Glazed Thermal Solar Collectors
,”
Sol. Energy Mater. Sol. Cells
,
89
(
2–3
), pp.
219
231
.
142.
Schüler
,
A.
,
Dutta
,
D.
,
Chambrier
,
E.
,
De
,
Roecker
,
C.
,
Temmerman
,
G.
,
De
,
Oelhafen
,
P.
, and
Scartezzini
,
J.-L. S.
,
2006
, “
Sol—Gel Deposition and Optical Characterization of Multilayered SiO 2/Ti 1 À x Si x O 2 Coatings on Solar Collector Glasses
,”
Sol. Energy Mater. Sol. Cells
,
90
(
17
), pp.
2894
2907
.
143.
Ghosh
,
S. S.
,
Biswas
,
P. K.
, and
Neogi
,
S.
,
2017
, “
Thermal Performance of Solar Cooker With Special Cover Glass of Low-e Antimony Doped Indium Oxide (IAO) Coating
,”
Appl. Therm. Eng.
,
113
, pp.
103
111
.
144.
Khullar
,
V.
,
Mahendra
,
P.
, and
Mittal
,
M. K.
,
2017
, “
Applicability OF Heat Mirrors in Reducing Thermal Losses in Concentrating Solar Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(6), p. 061004.
145.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
Mckrell
,
T.
,
Townsend
,
J.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Sandra
,
W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Jae
,
S.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Paola
,
R.
,
Di
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Kenneth
,
E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Geok
,
L.
,
Kim
,
C.
,
Kim
,
J.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Aleksandr
,
N.
,
Vaerenbergh
,
S.
,
Van
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.
,
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
Mckrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
, and
Bonetti
,
M.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p. 094312.
146.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
(
1
), pp.
253
265
.
147.
Taylor
,
R.
,
Coulombe
,
S.
,
Otanicar
,
T.
,
Phelan
,
P.
,
Gunawan
,
A.
,
Lv
,
W.
,
Rosengarten
,
G.
,
Prasher
,
R.
, and
Tyagi
,
H.
,
2013
, “
Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids
,”
J. Appl. Phys.
,
113
(
1
), p. 011301.
148.
Hassani
,
S.
,
Taylor
,
R. A.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2016
, “
A Cascade Nanofluid-Based PV/T System With Optimized Optical and Thermal Properties
,”
Energy
,
112
, pp.
963
975
.
149.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
23104
.
150.
Polvongsri
,
S.
, and
Kiatsiriroat
,
T.
,
2014
, “
Performance Analysis of Flat-Plate Solar Collector Having Silver Nanofluid as a Working Fluid
,”
Heat Transfer Eng.
,
35
(
13
), pp.
1183
1191
.
151.
Gómez-Villarejo
,
R.
,
Martín
,
E. I.
,
Navas
,
J.
,
Sánchez-Coronilla
,
A.
,
Aguilar
,
T.
,
Gallardo
,
J. J.
,
Alcántara
,
R.
,
De los Santos
,
D.
,
Carrillo-Berdugo
,
I.
, and
Fernández-Lorenzo
,
C.
,
2017
, “
Ag-Based Nanofluidic System to Enhance Heat Transfer Fluids for Concentrating Solar Power: Nano-Level Insights
,”
Appl. Energy
,
194
, pp.
19
29
.
152.
Zhang
,
Z.
,
Yuan
,
Y.
,
Zhang
,
N.
,
Sun
,
Q.
,
Cao
,
X.
, and
Sun
,
L.
,
2017
, “
Thermal Properties Enforcement of Carbonate Ternary Via Lithium Fluoride: A Heat Transfer Fluid for Concentrating Solar Power Systems
,”
Renewable Energy
,
111
, pp.
523
531
.
153.
Zhang
,
Z.
,
Yuan
,
Y.
,
Ouyang
,
L.
,
Sun
,
Q.
,
Cao
,
X.
, and
Alelyani
,
S.
,
2017
, “
Enhanced Thermal Properties of Li2CO3–Na2CO3–K2CO3 Nanofluids With Nanoalumina for Heat Transfer in High-Temperature CSP Systems
,”
J. Therm. Anal. Calorim.
,
128
(
3
), pp.
1783
1792
.
154.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Adrian
,
R. J.
, and
Prasher
,
R. S.
,
2009
, “
Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser
,”
Appl. Phys. Lett.
,
95
(
16
), p. 161907.
155.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
33102
.
156.
Khullar
,
V.
,
Tyagi
,
H.
,
Hordy
,
N.
,
Otanicar
,
T. P.
,
Hewakuruppu
,
Y.
,
Modi
,
P.
, and
Taylor
,
R. A.
,
2014
, “
Harvesting Solar Thermal Energy Through Nanofluid-Based Volumetric Absorption Systems
,”
Int. J. Heat Mass Transfer
,
77
, pp.
377
384
.
157.
Bhalla
,
V.
, and
Tyagi
,
H.
,
2017
, “
Solar Energy Harvesting by Cobalt Oxide Nanoparticles, a Nanofluid Absorption Based System
,”
Sustain. Energy Technol. Assess.
,
24
, pp.
45
54
.
158.
Freedman
,
J. P.
,
Wang
,
H.
, and
Prasher
,
R. S.
,
2018
, “
Analysis of Nanofluid-Based Parabolic Trough Collectors for Solar Thermal Applications
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051008
.
159.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.
160.
Milanese
,
M.
,
Colangelo
,
G.
,
Cretì
,
A.
,
Lomascolo
,
M.
,
Iacobazzi
,
F.
, and
De Risi
,
A.
,
2016
, “
Optical Absorption Measurements of Oxide Nanoparticles for Application as Nanofluid in Direct Absorption Solar Power Systems—Part I: Water-Based Nanofluids Behavior
,”
Sol. Energy Mater. Sol. Cells
,
147
, pp.
315
320
.
161.
Khullar
,
V.
,
Tyagi
,
H.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2013
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.
162.
Milanese
,
M.
,
Colangelo
,
G.
,
Cretì
,
A.
,
Lomascolo
,
M.
,
Iacobazzi
,
F.
, and
De Risi
,
A.
,
2016
, “
Optical Absorption Measurements of Oxide Nanoparticles for Application as Nanofluid in Direct Absorption Solar Power Systems—Part II: ZnO, CeO2, Fe2O3 nanoparticles Behavior
,”
Sol. Energy Mater. Sol. Cells
,
147
, pp.
321
326
.
163.
Muraleedharan
,
M.
,
Singh
,
H.
,
Suresh
,
S.
, and
Udayakumar
,
M.
,
2016
, “
Directly Absorbing Therminol-Al2O3nano Heat Transfer Fluid for Linear Solar Concentrating Collectors
,”
Sol. Energy
,
137
, pp.
134
142
.
164.
Bhalla
,
V.
,
Khullar
,
V.
, and
Tyagi
,
H.
,
2018
, “
Experimental Investigation of Photo-Thermal Analysis of Blended Nanoparticles (Al2O3/Co3O4) for Direct Absorption Solar Thermal Collector
,”
Renewable Energy
,
123
, pp.
616
626
.
165.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Adrian
,
R. J.
,
Gunawan
,
A.
, and
Otanicar
,
T. P.
,
2012
, “
Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids
,”
Int. J. Therm. Sci.
,
56
, pp.
1
11
.
166.
Garg
,
K.
,
Khullar
,
V.
,
Das
,
S. K.
, and
Tyagi
,
H.
,
2018
, “
Performance Evaluation of a Brine-Recirculation Multistage Flash Desalination System Coupled With Nanofluid-Based Direct Absorption Solar Collector
,”
Renewable Energy
,
122
, pp.
140
151
.
167.
Quesada
,
G.
,
Guillon
,
L.
,
Rousse
,
D. R.
,
Mehrtash
,
M.
,
Dutil
,
Y.
, and
Paradis
,
P. L.
,
2015
, “
Tracking Strategy for Photovoltaic Solar Systems in High Latitudes
,”
Energy Convers. Manage.
,
103
, pp.
147
156
.
168.
Lu
,
S.
,
Dai
,
R.
,
Zhang
,
G.
, and
Wang
,
Q.
,
2018
, “
Investigation of Street Lamp With Automatic Solar Tracking System
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061002
.
169.
Ferreira
,
L. A. S.
,
Loschi
,
H. J.
,
Rodriguez
,
A. A. D.
,
Iano
,
Y.
, and
do Nascimento
,
D. A.
,
2018
, “
A Solar Tracking System Based on Local Solar Time Integrated to Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
140
(
2
), p.
021010
.
170.
Salgado-Conrado
,
L.
,
2018
, “
A Review on Sun Position Sensors Used in Solar Applications
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
2128
2146
.
171.
Nsengiyumva
,
W.
,
Chen
,
S. G.
,
Hu
,
L.
, and
Chen
,
X.
,
2018
, “
Recent Advancements and Challenges in Solar Tracking Systems (STS): a Review
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
250
279
.
172.
Sefa
,
I.
,
Demirtas
,
M.
, and
Çolak
,
I.
,
2009
, “
Application of One-Axis Sun Tracking System
,”
Energy Convers. Manage
,
50
(
11
), pp.
2709
2718
.
173.
Poulek
,
V.
,
Khudysh
,
A.
, and
Libra
,
M.
,
2016
, “
Self Powered Solar Tracker for Low Concentration PV (LCPV) Systems
,”
Sol. Energy
,
127
, pp.
109
112
.
174.
Sidek
,
M. H. M.
,
Azis
,
N.
,
Hasan
,
W. Z. W.
,
Ab Kadir
,
M. Z. A.
,
Shafie
,
S.
, and
Radzi
,
M. A. M.
,
2017
, “
Automated Positioning Dual-Axis Solar Tracking System With Precision Elevation and Azimuth Angle Control
,”
Energy
,
127
, p.
803
.
175.
Barker
,
L.
,
Neber
,
M.
, and
Lee
,
H.
,
2013
, “
Design of a Low-Profile Two-Axis Solar Tracker
,”
Sol. Energy
,
97
, pp.
569
576
.
176.
Lim
,
T.
,
Kwak
,
P.
,
Song
,
K.
,
Kim
,
N.
, and
Lee
,
J.
,
2016
, “
Automated Dual-Axis Planar Solar Tracker With Controllable Vertical Displacement for Concentrating Solar Microcell Arrays
,”
Prog. Photovolt. Res. Appl.
,
15
(
3–4
), pp.
326
334
.
177.
El Jaouhari
,
Z.
,
Zaz
,
Y.
,
Moughyt
,
S.
,
El Kadmiri
,
O.
, and
El Kadmiri
,
Z.
,
2018
, “
Dual-Axis Solar Tracker Design Based on a Digital Hemispherical Imager
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011001
.
178.
Singh
,
R.
,
Kumar
,
S.
,
Gehlot
,
A.
, and
Pachauri
,
R.
,
2018
, “
An Imperative Role of Sun Trackers in Photovoltaic Technology: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3263
3278
.
179.
Rubio
,
F. R.
,
Ortega
,
M. G.
,
Gordillo
,
F.
, and
López-Martínez
,
M.
,
2007
, “
Application of New Control Strategy for Sun Tracking
,”
Energy Convers. Manage.
,
48
(
7
), pp.
2174
2184
.
180.
Lamoureux
,
A.
,
Lee
,
K.
,
Shlian
,
M.
,
Forrest
,
S. R.
, and
Shtein
,
M.
,
2015
, “
Dynamic Kirigami Structures for Integrated Solar Tracking
,”
Nat. Commun.
,
6
(
1
), pp.
1
6
.
181.
Yao
,
Y.
,
Hu
,
Y.
,
Gao
,
S.
,
Yang
,
G.
, and
Du
,
J.
,
2014
, “
A Multipurpose Dual-Axis Solar Tracker With Two Tracking Strategies
,”
Renewable Energy
,
72
, pp.
88
98
.
182.
Sabiha
,
M. A.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Mahian
,
O.
,
2015
, “
Progress and Latest Developments of Evacuated Tube Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
1038
1054
.
183.
Kumar
,
S. S.
,
Kumar
,
K. M.
, and
Kumar
,
S. R. S.
,
2017
, “
Design of Evacuated Tube Solar Collector With Heat Pipe
,”
Materials Today: Proceedings
,
4
(14), pp.
12641
12646
.
184.
Khan
,
M. M. A.
,
Ibrahim
,
N. I.
,
Mahbubul
,
I. M.
,
Muhammad. Ali
,
H.
,
Saidur
,
R.
, and
Al-Sulaiman
,
F. A.
,
2018
, “
Evaluation of Solar Collector Designs With Integrated Latent Heat Thermal Energy Storage: A Review
,”
Sol. Energy
,
166
, pp.
334
350
.
185.
Zielinski
,
A.
,
Dillon
,
H.
,
Baldwin
,
B.
,
Forinash
,
C.
,
Zada
,
K.
,
Stillinger
,
C.
, and
Dieter
,
K.
,
2016
, “
Design and Performance of a Small Hybrid Solar Collector
,”
ASME
Paper No. POWER2016-59098.
186.
Shafii
,
M. B.
,
Jahangiri Mamouri
,
S.
,
Lotfi
,
M. M.
, and
Jafari Mosleh
,
H.
,
2016
, “
A Modified Solar Desalination System Using Evacuated Tube Collector
,”
Desalination
,
396
, pp.
30
38
.
187.
Bataineh
,
M. K.
, and
AL-Karasneh
,
N. A.
,
2016
, “
Direct Solar Steam Generation Inside Evacuated Tube Absorber
,”
AIMS Energy
,
4
(
6
), pp.
921
935
.
188.
Jafari Mosleh
,
H.
,
Mamouri
,
S. J.
,
Shafii
,
M. B.
, and
Hakim Sima
,
A.
,
2015
, “
A New Desalination System Using a Combination of Heat Pipe, Evacuated Tube and Parabolic Through Collector
,”
Energy Convers. Manage.
,
99
, pp.
141
150
.
189.
Papadimitratos
,
A.
,
Sobhansarbandi
,
S.
,
Pozdin
,
V.
,
Zakhidov
,
A.
, and
Hassanipour
,
F.
,
2016
, “
Evacuated Tube Solar Collectors Integrated With Phase Change Materials
,”
Sol. Energy
,
129
, pp.
10
19
.
190.
Feliński
,
P.
, and
Sekret
,
R.
,
2016
, “
Experimental Study of Evacuated Tube Collector/Storage System Containing Paraffin as a PCM
,”
Energy
,
114
, pp.
1063
1072
.
191.
Abokersh
,
M. H.
,
El-Morsi
,
M.
,
Sharaf
,
O.
, and
Abdelrahman
,
W.
,
2017
, “
An Experimental Evaluation of Direct Flow Evacuated Tube Solar Collector Integrated With Phase Change Material
,”
Energy
,
139
, pp.
1111
1125
.
192.
Sobhansarbandi
,
S.
,
Martinez
,
P. M.
,
Papadimitratos
,
A.
,
Zakhidov
,
A.
, and
Hassanipour
,
F.
,
2017
, “
Evacuated Tube Solar Collector With Multifunctional Absorber Layers
,”
Sol. Energy
,
146
, pp.
342
350
.
193.
Kumar
,
S.
,
Dubey
,
A.
, and
Tiwari
,
G. N.
,
2014
, “
A Solar Still Augmented With an Evacuated Tube Collector in Forced Mode
,”
Desalination
,
347
, pp.
15
24
.
194.
Kuang
,
R.
,
Song
,
Y.
,
Li
,
Z.
, and
Gu
,
Q.
,
2018
, “
The Mechanical Analysis of an All-Glass Solar Evacuated Tube With Spiral Inner Tube for Seawater Desalination
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p. 031008.
195.
Kumar
,
R.
,
Adhikari
,
R. S.
,
Garg
,
H. P.
, and
Kumar
,
A.
,
2001
, “
Thermal Performance of a Solar Pressure Cooker Based on Evacuated Tube Solar Collector
,”
Appl. Therm. Eng.
,
21
(
16
), pp.
1699
1706
.
196.
Fadhel
,
M. I.
,
Sopian
,
K.
, and
Daud
,
W. R. W.
,
2010
, “
Performance Analysis of Solar-Assisted Chemical Heat-Pump Dryer
,”
Sol. Energy
,
84
(
11
), pp.
1920
1928
.
You do not currently have access to this content.