Due to its superior electrical and thermal characteristics, silicon carbide power modules will soon replace silicon modules to be mass-produced and implemented in all-electric and hybrid-electric vehicles (HEVs). Redesign of the power modules will be required to take full advantage of these newer devices. A particular area of interest is high-temperature power modules, as under-hood temperatures often exceed maximum silicon device temperatures. This review will examine thermal packaging options for standard Si power modules and various power modules in recent all-electric and HEVs. Then, thermal packaging options for die-attach, thermal interface materials (TIM), and liquid cooling are discussed for their feasibility in next-generation silicon carbide (SiC) power modules.

References

References
1.
ARPA,
2013
, “
SWITCHES Non-SBIR Program Overview
,” ARPA-E,
Report
.https://arpa-e.energy.gov/sites/default/files/documents/files/SWITCHES_Program%20Overview.pdf
2.
Disney
,
D.
,
Nie
,
H.
,
Edwards
,
A.
,
Bour
,
D.
,
Shah
,
H.
, and
Kizilyalli
,
I.
,
2013
, “
Vertical Power Diodes in Bulk GaN
,” 25th International Symposium on Power Semiconductor Devices & IC's
(ISPSD)
, Kanazawa, Japan, May 26–30, pp.
59
62
.
3.
Tolbert
,
L. M.
,
King
,
T. J.
,
Ozpineci
,
B.
,
Campbell
,
J. B.
,
Muralidharan
,
G.
,
Rizy
,
D. T.
,
Sabau
,
A. S.
,
Zhang
,
H.
,
Zhang
,
W.
, and
Xu
,
Y.
,
2005
, “
Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2005/230.
4.
Mantooth
,
H. A.
,
Glover
,
M. D.
, and
Shepherd
,
P.
,
2014
, “
Wide Bandgap Technologies and Their Implications on Miniaturizing Power Electronic Systems
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
2
(
3
), pp.
374
385
.
5.
Villamor
,
A.
,
Liao
,
J.
, and
Txapartegi
,
M. G.
,
2017
,
The Power Electronics Industry Is Showing Steady Growth and High Dynamism
,
Yole Développement
,
Lyon, France
.
6.
Bindra
,
A.
,
2015
, “
Wide-Bandgap-Based Power Devices: Reshaping the Power Electronics Landscape
,”
IEEE Power Electron. Mag.
,
2
(
1
), pp.
42
47
.
7.
Millán
,
J.
,
Godignon
,
P.
,
Perpiñà
,
X.
,
Pérez-Tomás
,
A.
, and
Rebollo
,
J.
,
2014
, “
A Survey of Wide Bandgap Power Semiconductor Devices
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2155
2163
.
8.
Paskova
,
T.
, and
Evans
,
K. R.
,
2009
, “
GaN Substrate–Progress, Status, and Prospects
,”
IEEE J. Sel. Top. Quantum Electron.
,
15
(
4
), pp.
1041
1052
.
9.
Bar-Cohen
,
A.
,
Albrecht
,
J. D.
, and
Maurer
,
J. J.
,
2011
, “
Near-Junction Thermal Management for Wide Bandgap Devices
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
(
CSICS
), Waikoloa, HI, Oct. 16–19, pp.
1
5
.
10.
Jones
,
E. A.
,
Wang
,
F. F.
, and
Costinett
,
D.
,
2016
, “
Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
4
(
3
), pp.
707
719
.
11.
Toyota,
2015
, “
Toyota to Trial New SiC Power Semiconductor Technology
,” Toyota Motor Corporation, Toyota City, Japan, accessed July 23, 2018, https://newsroom.toyota.co.jp/en/detail/5692153
12.
Mitsubishi,
2015
, “
Mitsubishi Electric's Railcar Traction Inverter With All-SiC Power Modules Achieves 40% Power Savings
,” Mitsubishi Electric Corporation, Tokyo, Japan, accessed July 23, 2018, http://www.mitsubishielectric.com/news/2015/0622-a.html
13.
Ye
,
H.
,
Lin
,
M.
, and
Basaran
,
C.
,
2002
, “
Failure Modes and FEM Analysis of Power Electronic Packaging
,”
Finite Elem. Anal. Des.
,
38
(
7
), pp.
601
612
.
14.
Dietrich
,
P.
,
2013
, “
Trends in Automotive Power Semiconductor Packaging
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1681
1686
.
15.
Yin
,
S.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2013
, “
Design of AlN-Based Micro-Channel Heat Sink in Direct Bond Copper for Power Electronics Packaging
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
120
129
.
16.
Coppola
,
L.
,
Huff
,
D.
,
Wang
,
F.
,
Burgos
,
R.
, and
Boroyevich
,
D.
,
2007
, “
Survey on High-Temperature Packaging Materials for SiC-Based Power Electronics Modules
,”
IEEE Power Electronics Specialists Conference
(
PESC
), Orlando, FL, June 17–21, pp.
2234
2240
.
17.
Fukumoto
,
A.
,
Berry
,
D.
,
Ngo
,
K. D. T.
, and
Guo-Quan Lu
,
K. D. T.
,
2014
, “
Effects of Extreme Temperature Swings (−55 °C to 250 °C) on Silicon Nitride Active Metal Brazing Substrates
,”
IEEE Trans. Device Mater. Reliab.
,
14
(
2
), pp.
751
756
.
18.
Qu
,
X-h.
,
Zhang
,
L.
,
Wu
,
M.
, and
Ren
,
S-B.
,
2011
, “
Review of Metal Matrix Composites With High Thermal Conductivity for Thermal Management Applications
,”
Prog. Nat. Sci.: Mater. Int.
,
21
(
3
), pp.
189
197
.
19.
Chu
,
K.
,
Guo
,
H.
,
Jia
,
C.
,
Yin
,
F.
,
Zhang
,
X.
,
Liang
,
X.
, and
Chen
,
H.
,
2010
, “
Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications
,”
Nanoscale Res. Lett.
,
5
(
5
), pp.
868
674
.
20.
Han
,
X.-H.
,
Wang
,
Q.
,
Park
,
Y.-G.
,
T'joen
,
C.
,
Sommers
,
A.
, and
Jacobi
,
A.
,
2012
, “
A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks
,”
Heat Transfer Eng.
,
33
(
12
), pp.
991
1009
.
21.
Luedtke
,
A.
,
2004
, “
Thermal Management Materials for High-Performance Applications
,”
Adv. Eng. Mater.
,
6
(
3
), pp.
142
144
.
22.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Kelly
,
K.
, and
Eesley
,
G.
,
2008
, “
Thermal Interface Materials for Power Electronics Applications
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), Orlando, FL, May 28–31, pp.
395
404
.
23.
Burress
,
T. A.
,
Campbell
,
S. L.
,
Coomer
,
C.
,
Ayers
,
C. W.
,
Wereszczak
,
A. A.
,
Cunningham
,
J. P.
,
Marlino
,
L. D.
,
Seiber
,
L. E.
, and
Lin
,
H. T.
,
2011
, “
Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2010/253
.https://www.osti.gov/biblio/1007833-evaluation-toyota-prius-hybrid-synergy-drive-system
24.
Burress
,
T. A.
,
Coomer
,
C. L.
,
Campbell
,
S. L.
,
Wereszczak
,
A. A.
,
Cunningham
,
J. P.
,
Marlino
,
L. D.
,
Seiber
,
L. E.
, and
Lin
,
H.-T.
,
2009
, “
Evaluation of the 2008 Lexus LS 600H Hybrid Synergy Drive System
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2008/185
.https://www.osti.gov/biblio/947393/
25.
Liang
,
Z.
,
2015
, “
Integrated Double Sided Cooling Packaging of Planar SiC Power Modules
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Montreal, QC, Canada, Sept. 20–24, pp.
4907
4912
26.
Schulz-Harder
,
J.
,
Exel
,
K.
, and
Meyer
,
A.
,
2006
, “
Direct Liquid Cooling of Power Electronics Devices
,”
Fourth International Conference on Integrated Power Systems
(
CIPS
), Nuremberg, Germany, June 7–9, pp.
1
6
.https://ieeexplore.ieee.org/document/5758077/
27.
Nozawa
,
N.
,
Maekawa
,
T.
,
Nozawa
,
S.
, and
Asakura
,
K.
,
2009
, “
Development of Power Control Unit for Compact-Class Vehicle
,”
SAE Int. J. Passenger Cars—Electron. Electr. Syst.
,
2
(
1
), pp.
376
382
.
28.
Sato
,
Y.
,
Ishikawa
,
S.
,
Okubo
,
T.
,
Abe
,
M.
, and
Tamai
,
K.
,
2011
, “
Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle
,”
SAE
Paper No. 2011-01-0350
29.
Moreno
,
G.
,
Bennion
,
K.
,
King
,
C.
, and
Narumanchi
,
S.
,
2016
, “
Evaluation of Performance and Opportunities for Improvements in Automotive Power Electronics Systems
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Las Vegas, NV
, May 31–June 3, pp.
185
192
.
30.
Anwar
,
M.
,
Hasan
,
S. M. N.
,
Teimor
,
M.
,
Korich
,
M.
, and
Hayes
,
M. B.
,
2015
, “
Development of a Power Dense and Environmentally Robust Traction Power Inverter for the Second-Generation Chevrolet VOLT Extended-Range EV
,”
IEEE Energy Conversion Congress and Exposition
(
ECCE
), Montreal, QC, Canada, Sept. 20–24, pp.
6006
6013
.
31.
Anwar
,
M.
,
Teimor
,
M.
,
Savagian
,
P.
,
Saito
,
R.
, and
Matsuo
,
T.
,
2016
, “
Compact and High Power Inverter for the Cadillac CT6 Rear Wheel Drive PHEV
,”
IEEE Energy Conversion Congress and Exposition
(
ECCE
), Milwaukee, WI, Sept. 18–22, pp.
1
7
.
32.
Kitazawa
,
O.
,
Kikuchi
,
T.
,
Nakashima
,
M.
,
Tomita
,
Y.
,
Kosugi
,
H.
, and
Kaneko
,
T.
,
2016
, “
Development of Power Control Unit for Compact-Class Vehicle
,”
SAE Int. J. Altern. Powertrains
,
5
(
2
), pp.
278
285
.
33.
Toyota,
2014
, “Toyota Develops New Silicon Carbide Power Semiconductor With Higher Efficiency,”
Toyota Motor Corporation
,
Toyota City, Japan
, accessed July 23, 2018, https://newsroom.toyota.co.jp/en/detail/2656842
34.
Siow
,
K. S.
,
2014
, “
Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?
,”
J. Electron. Mater.
,
43
(
4
), pp.
947
961
.
35.
Manikam
,
V. R.
, and
Cheong
,
K. Y.
,
2011
, “
Die Attach Materials for High Temperature Applications: A Review
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
4
), pp.
457
478
.
36.
Khazaka
,
R.
,
Mendizabal
,
L.
,
Henry
,
D.
, and
Hanna
,
R.
,
2015
, “
Survey of High-Temperature Reliability of Power Electronics Packaging Components
,”
IEEE Trans. Power Electron.
,
30
(
5
), pp.
2456
2464
.
37.
Han
,
Y. D.
,
Jing
,
H. Y.
,
Nai
,
S. M. L.
,
Xu
,
L. Y.
,
Tan
,
C. M.
, and
Wei
,
J.
,
2010
, “
Temperature Dependence of Creep and Hardness of Sn-Ag-Cu Lead-Free Solder
,”
J. Electron. Mater.
,
39
(
2
), pp.
223
229
.
38.
Papanikolaou
,
N. C.
,
Hatzidaki
,
E. G.
,
Belivanis
,
S.
,
Tzanakakis
,
G. N.
, and
Tsatsakis
,
A. M.
,
2005
, “
Lead Toxicity Update: A Brief Review
,”
Med. Sci. Monitor
,
11
(
10
), pp.
RA329
RA336
. https://www.ncbi.nlm.nih.gov/pubmed/16192916
39.
Menon
,
S.
,
George
,
E.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2015
, “
High Lead Solder (Over 85%) Solder in the Electronics Industry: RoHS Exemptions and Alternatives
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
6
), pp.
4021
4030
.
40.
Mallampati
,
S.
,
Yin
,
L.
,
Shaddock
,
D.
,
Schoeller
,
H.
, and
Cho
,
J.
,
2018
, “
Lead-Free Alternatives for Interconnects in High-Temperature Electronics
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010906
.
41.
An
,
T.
, and
Qin
,
F.
,
2016
, “
Relationship Between the Intermetallic Compounds Growth and the Microcracking Behavior of Lead-Free Solder Joints
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
011002
.
42.
Cook
,
G. O.
, and
Sorensen
,
C. D.
,
2011
, “
Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding
,”
J. Mater. Sci.
,
46
(
16
), pp.
5305
5323
.
43.
Siow
,
K. S.
,
2012
, “
Mechanical Properties of Nano-Silver Joints as Die Attach Materials
,”
J. Alloys Compd.
,
514
, pp.
6
19
.
44.
Huang
,
Y.
,
Hang
,
C.
,
Tian
,
Y.
,
Zhang
,
H.
,
Wang
,
C.
, and
Wang
,
X.
,
2017
, “
Rapid Sintering of Copper Nanopaste by Pulse Current for Power Electronics Packaging
,”
18th International Conference on Electronic Packaging Technology
(
ICEPT
), Harbin, China, Aug. 16–19, pp.
561
564
.
45.
Zhao
,
J.
,
Yao
,
M.
, and
Lee
,
N. C.
,
2017
, “
Nano-Cu Sintering Paste for High Power Devices Die Attach Applications
,”
12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)
, Taipei, Taiwan, pp.
70
76
.
46.
Mahajan
,
R.
,
Chiu
,
C.
, and
Prasher
,
R.
,
2004
, “
Thermal Interface Materials: A Brief Review of Design Characteristics and Materials
,”
Electron. Cooling
,
10
(
1
), epub.https://www.electronics-cooling.com/2004/02/thermal-interface-materials-a-brief-review-of-design-characteristics-and-materials/
47.
Wilson
,
J.
,
2005
, “
Phase Change Material Thermal Properties
,”
Electron. Cooling
,
11
(
2
), epub.https://www.electronics-cooling.com/2005/05/phase-change-material-thermal-properties/
48.
Liu
,
J.
,
Wang
,
T.
,
Carlberg
,
B.
, and
Inoue
,
M.
,
2008
, “
Recent Progress of Thermal Interface Materials
,”
Second Electronics System-Integration Technology Conference
(
ESTC
), Greenwich, UK, Sept. 1–4, pp.
351
358
.
49.
Yu
,
H.
,
Li
,
L.
,
Kido
,
T.
,
Xi
,
G.
,
Xu
,
G.
, and
Guo
,
F.
,
2012
, “
Thermal and Insulating Properties of Epoxy/Aluminum Nitride Composites Used for Thermal Interface Material
,”
J. Appl. Polym. Sci.
,
124
(
1
), pp.
669
677
.
50.
Xu
,
J.
,
Munari
,
A.
,
Dalton
,
E.
,
Mathewson
,
A.
, and
Razeeb
,
K. M.
,
2009
, “
Silver Nanowire Array-Polymer Composite as Thermal Interface Material
,”
J. Appl. Phys.
,
106
(
12
), p.
124310
.
51.
Sanada
,
K.
,
Tada
,
Y.
, and
Shindo
,
Y.
,
2009
, “
Thermal Conductivity of Polymer Composites With Close-Packed Structure of Nano and Micro Fillers
,”
Compos. Part A: Appl. Sci. Manuf.
,
40
(
6–7
), pp.
724
730
.
52.
Zhang
,
T.
,
Sammakia
,
B. G.
,
Yang
,
Z.
, and
Wang
,
H.
,
2018
, “
Hybrid Nanocomposite Thermal Interface Materials: The Thermal Conductivity and the Packing Density
,”
ASME J. Electron. Packag.
,
140
(
3
), p.
031006
.
53.
Shahil
,
K. M. F.
, and
Balandin
,
A. A.
,
2012
, “
Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials
,”
Solid State Commun.
,
152
(
15
), pp.
1331
1340
.
54.
Yu
,
A.
,
Ramesh
,
P.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
,
2007
, “
Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials
,”
J. Phys. Chem. C
,
111
(
21
), pp.
7565
7569
.
55.
Peacock
,
M. A.
,
Roy
,
C. K.
,
Hamilton
,
M. C.
,
Wayne Johnson
,
R.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2016
, “
Characterization of Transferred Vertically Aligned Carbon Nanotubes Arrays as Thermal Interface Materials
,”
Int. J. Heat Mass Transfer
,
97
, pp.
94
100
.
56.
Cola
,
B. A.
,
2010
, “
Carbon Nanotubes as High Performance Thermal Interface Materials
,”
Electron. Cooling
,
16
(
1
), pp.
10
15
.https://www.electronics-cooling.com/2010/04/carbon-nanotubes-as-high-performance-thermal-interface-materials/
57.
McNamara
,
A. J.
,
Joshi
,
Y.
, and
Zhang
,
Z. M.
,
2012
, “
Characterization of Nanostructured Thermal Interface Materials—A Review
,”
Int. J. Therm. Sci.
,
62
, pp.
2
11
.
58.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021001
.
59.
Chow
,
Y.
,
2008
, “AC Propulsion Partners With BMW to Build 500 Electric Vehicles,”
AC Propulsion
,
San Dimas, CA
.
60.
Chein
,
R.
,
Yang
,
H.
,
Tsai
,
T.-H.
, and
Lu
,
C.
,
2010
, “
Experimental Study of Heat Sink Performance Using Copper Foams Fabricated by Electroforming
,”
Microsyst. Technol.
,
16
(
7
), pp.
1157
1164
.
61.
Wu
,
W.
,
Bostanci
,
H.
,
Chow
,
L. C.
,
Ding
,
S. J.
,
Hong
,
Y.
,
Su
,
M.
,
Kizito
,
J. P.
,
Gschwender
,
L.
, and
Snyder
,
C. E.
,
2011
, “
Jet Impingement and Spray Cooling Using Slurry of Nanoencapsulated Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2715
2723
.
62.
Ndao
,
S.
,
Lee
,
H. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2012
, “
Heat Transfer Enhancement From Micro Pin Fins Subjected to an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
413
421
.
63.
Dede
,
E. M.
,
2014
, “
Single-Phase Microchannel Cold Plate for Hybrid Vehicle Electronics
,”
Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 9–13, pp.
118
124
.
64.
Dede
,
E.
, and
Nomura
,
T.
,
2014
, “
Topology Optimization of a Hybrid Vehicle Power Electronics Cold Plate
,”
Second International Electric Vehicle Technology & Automobile Power Electronics Japan Conference (EVTeC & APE)
, Yokohama, Japan, May 22–24, p. 20144098.
65.
Sharar
,
D.
,
Jankowski
,
N. R.
, and
Morgan
,
B.
,
2010
, “Review of Two-Phase Electronics Cooling for Army Vehicle Applications,” Army Research Laboratory, Adelphia, MD, Report No. ARL-TR-5323.
66.
Ebadian
,
M.
, and
Lin
,
C.
,
2011
, “
A Review of High-Heat-Flux Heat Removal Technologies
,”
ASME J. Heat Transfer
,
133
(
11
), p.
110801
.
67.
Ditri
,
J.
,
Hahn
,
J.
,
Cadotte
,
R.
,
McNulty
,
M.
, and
Luppa
,
D.
,
2015
, “
Embedded Cooling of High Heat Flux Electronics Utilizing Distributed Microfluidic Impingement Jets
,”
ASME
Paper No. IPACK2015-48689.
68.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2006
, “
Experimental and Numerical Investigation of Single-Phase Heat Transfer Using a Hybrid Jet-Impingement/Micro-Channel Cooling Scheme
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
682
694
.
69.
Coursey
,
J. S.
,
Kim
,
J.
, and
Kiger
,
K. T.
,
2007
, “
Spray Cooling of High Aspect Ratio Open Microchannels
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1052
1059
.
70.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2007
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.
71.
Rau
,
M. J.
, and
Garimella
,
S. V.
,
2013
, “
Local Two-Phase Heat Transfer From Arrays of Confined and Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
67
, pp.
487
498
.
72.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.
73.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling --- Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.
74.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
75.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Dev. Lett.
,
2
(
5
), pp.
126
129
.
76.
Mandel
,
R. K.
,
Bae
,
D. G.
, and
Ohadi
,
M. M.
,
2018
, “
Embedded Two-Phase Cooling of High Flux Electronics Via Press-Fit and Bonded FEEDS Coolers
,”
ASME J. Electron. Packag.
,
140
(
3
), p.
031003
.
77.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2267
2281
.
78.
Wu
,
Z.
, and
Sundén
,
B.
,
2014
, “
On Further Enhancement of Single-Phase and Flow Boiling Heat Transfer in Micro/Minichannels
,”
Renewable Sustainable Energy Rev.
,
40
, pp.
11
27
.
79.
Huang
,
H.
,
Borhani
,
N.
, and
Richard Thome
,
J.
,
2016
, “
Thermal Response of Multi-Microchannel Evaporators During Flow Boiling of Refrigerants Under Transient Heat Loads With Flow Visualization
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
031004
.
80.
Bennion
,
K.
,
Cousineau
,
J.
,
Lustbader
,
J.
, and
Narumanchi
,
S.
,
2014
, “
Novel Power Electronics Three-Dimensional Heat Exchanger
,”
14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
1055
1063
.
81.
Kelly
,
K.
,
Abraham
,
T.
,
Bennion
,
K.
,
Bharathan
,
D.
,
Narumanchi
,
S.
, and
O'Keefe
,
M.
,
2007
, “
Assessment of Thermal Control Technologies for Cooling Electric Vehicle Power Electronics
,”
23rd International Electric Vehicle Symposium
(
EVS-23
), Anaheim, CA, Dec. 2–5, pp.
2
5
.https://www.nrel.gov/docs/fy08osti/42267.pdf
82.
Lee
,
H.
,
Agonafer
,
D. D.
,
Won
,
Y.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2016
, “
Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010907
.
83.
Vladimirova
,
K.
,
Crebier
,
J. C.
,
Avenas
,
Y.
, and
Schaeffer
,
C.
,
2013
, “
Drift Region Integrated Microchannels for Direct Cooling of Power Electronic Devices: Advantages and Limitations
,”
IEEE Trans. Power Electron.
,
28
(
5
), pp.
2576
2586
.
84.
Bae
,
D. G.
,
Mandel
,
R. K.
,
Dessiatoun
,
S. V.
,
Rajgopal
,
S.
,
Roberts
,
S. P.
,
Mehregany
,
M.
, and
Ohadi
,
M. M.
,
2017
, “
Embedded Two-Phase Cooling of High Heat Flux Electronics on Silicon Carbide (SiC) Using Thin-Film Evaporation and an Enhanced Delivery System (FEEDS) Manifold-Microchannel Cooler
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, pp.
466
472
.
85.
Dede
,
E. M.
,
Zhou
,
F.
, and
Joshi
,
S. N.
,
2017
, “
Concepts for Embedded Cooling of Vertical Current Wide Band-Gap Semiconductor Devices
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, pp.
508
515
.
86.
Mudawar
,
I.
,
1992
, “
Direct-Immersion Cooling for High Power Electronic Chips
,”
Intersociety Conference on Thermal Phenomena in Electronic Systems
, Austin, TX, Feb. 5–8, pp.
74
84
.
87.
O'Keefe
,
M.
, and
Kevin
,
B.
,
2007
, “
A Comparison of Hybrid Electric Vehicle Power Electronics Cooling Options
,”
IEEE Vehicle Power and Propulsion Conference
(
VPPC
), Arlington, TX, Sept. 9–12, pp.
116
123
.
88.
Leighton
,
D.
,
2015
, “
Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement
,”
SAE Int. J. Passenger Cars—Mech. Syst.
,
8
(
2
), pp.
711
720
.
You do not currently have access to this content.