As silicon carbide (SiC) power semiconductor devices continue to mature for market adoption, innovative power electronics packaging designs and materials are needed. Wire-bonding loop is one of the limiting factors in traditional module packaging methods. Wire-bondless packaging methods have been demonstrated with low losses and to allow integration of gate drive circuit. In this paper, a wire-bondless packaging platform, referred to as power overlay kiloWatt (POL-kW), for SiC devices is presented. The packaging platform is intended for motor drives and power conversion in automotive, aerospace, and renewable power applications. POL-kW module's electrical and thermal performances are first summarized from previous experimental evaluations and numerical simulations. Although some of the evaluations were made using Si and Si–SiC hybrid modules, the results are applicable to SiC modules. Compared with aluminum wire-bonds, the utilization of polyimide-based Cu via interconnections resulted in much reduced parasitic inductance, contributing to significantly lower switching loss and less voltage overshoot. The POL-kW module with integrated heat sinks showed low thermal resistance, which was further reduced by double-sided cooling. Recent reliability results are presented, including high-temperature storage, temperature cycling, and power cycling.

References

References
1.
Elasser
,
A.
,
Chow
,
T. P.
, and
Chow
,
2002
, “
Silicon Carbide Benefits and Advantages for Power Electronics Circuits and Systems
,”
Proc. IEEE
,
90
(
6
), pp.
969
986
.
2.
Neudeck
,
P. G.
,
Okojie
,
R. S.
, and
Chen
,
L.
,
2002
, “
High-Temperature Electronics—A Role for Wide Bandgap Semiconductors?
,”
Proc. IEEE
,
90
(
6
), pp.
1065
1076
.
3.
Stevanovic
,
L. D.
,
Matocha
,
K. S.
,
Losee
,
P. A.
,
Glaser
,
J. S.
, and Arthur, S. D., 2010, “
Recent Advances in Silicon Carbide MOSFET Power Devices
,”
25th Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Palm Springs, CA, Feb. 21–25, pp. 1603–1609.
4.
Millán
,
J.
,
Godignon
,
P.
,
Perpiňà
,
X.
,
Pérez-Tomás
,
A.
, and
Rebollo
,
J.
,
2014
, “
A Survey of Wide Bandgap Power Semiconductor Devices
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2155
2163
.
5.
Horio
,
M.
,
Iizuka
,
Y.
,
Ikeda
,
Y.
,
Mochizuki
,
E.
, and
Takahashi
,
Y.
,
2012
, “
Ultra-Compact and High Reliable SiC MOSFET Power Module With 200C Operating Capability
,”
24th International Symposium on Power Semiconductor Devices and ICs
, Bruges, Belgium, June 3–7, p.
81
.
6.
Scheuermann
,
U.
,
2012
, “
Reliability of Planar SKiN Interconnect Technology
,”
Seventh International Conference on Integrated Power Electronics Systems
(
CIPS
), Nuremberg, Germany, Mar. 6–8, pp. 1–8. https://ieeexplore.ieee.org/abstract/document/6170666/
7.
Weidner
,
K.
, and
Kaspar
,
M.
,
2012
, “
Planar Interconnect Technology for Power Module System Integration
,”
Seventh International Conference on Integrated Power Electronics Systems
(
CIPS
), Nuremberg, Germany, Mar. 6–8, pp. 1–5. https://ieeexplore.ieee.org/document/6170665/
8.
Seal
,
S.
,
Glover
,
M. D.
, and
Mantooth
,
H. A.
,
2016
, “
Flip-Chip Bonded SiC Power Devices on a Low Temperature Co-Fired Ceramic (LTCC) Substrate for Next Generation Power Modules
,”
IMAPS International Conference on High Temperature Electronics
(
HiTEC
), Albuquerque, NM, May 10–12, pp. 159–168.
9.
Liu
,
X.
,
Haque
,
S.
,
Wang
,
J.
, and
Lu
,
G. Q.
,
2000
, “
Packaging of Integrated Power Electronics Modules Using Flip-Chip Technology
,”
Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), New Orleans, LA, Feb. 6–10, pp. 290–296.
10.
Xiao
,
Y.
,
Jain
,
N. P.
,
Barrett
,
J.
,
Rymaszewski
,
E. J.
,
Gutmann
,
R. J.
, and
Chow
,
T. P.
,
2001
, “
Flip-Chip Flex-Circuit Packaging for Power Electronics
,”
13th International Symposium on Power Semiconductor Devices and ICs
(
ISPSD'01
), Osaka, Japan, June 7, pp. 55–58.
11.
Fisher
,
R.
,
Fillion
,
R.
,
Burgess
,
J.
, and
Hennessy
,
W.
,
1995
, “
High Frequency, Low Cost, Power Packaging Using Thin Film Power Overlay Technology
,”
Tenth Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Dallas, TX, Mar. 5–9, pp. 12–17.
12.
Gowda
,
A.
,
Tuominen
,
R.
, and
McConnelee
,
P.
,
2014
, “
Power Overlay (POL)—Advanced Embedding Packaging Technology Platform
,”
SMTA International Conference
, Rosemont, IL, Sept. 28–Oct. 2.
13.
Gowda
,
A.
,
McConnelee
,
P.
,
Tuominen
,
R.
,
Smith
,
S.
, Hotaling, J., Zassowski, L., and Principe, L.,
2014
, “
Ultra-Thin Component Embedded Packaging Using Polyimide-Based Platform
,”
SMTA International Conference
, Rosemont, IL, Sept. 28–Oct. 2.
14.
Stevanovic
,
L.
,
Beaupre
,
R.
,
Delgado
,
E.
, and
Gowda
,
A.
, 2010, “
Low Inductance Power Module With Blade Connector
,”
25th Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Palm Springs, CA, Feb. 21–25, pp. 1603–1609.
15.
Pautsch
,
A.
,
Gowda
,
A.
,
Stevanovic
,
L.
, and
Beaupre
,
R.
,
2009
, “
Double-Sided Microchannel Cooling of a Power Electronics Module Using Power Overlay
,”
ASME
Paper No. InterPACK2009-89190.
16.
Stevanovic
,
L.
,
Beaupre
,
R.
,
Gowda
,
A.
,
Pautsch
,
A.
, and
Solovitz
,
S.
,
2010
, “
Integral Micro-Channel Liquid Cooling for Power Electronics
,”
25th Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Palm Springs, CA, Feb. 21–25, pp. 1591–1597.
17.
Lutz
,
J.
,
Schlangenotto
,
H.
,
Scheuermann
,
U. D.
, and
Doncker
,
R.
,
2011
,
Semiconductor Power Devices: Physics, Characteristics, Reliability
,
Springer
,
Berlin
, Chap. 11.
18.
Ciappa
,
M.
,
2002
, “
Selected Failure Mechanisms of Modern Power Modules
,”
Microelectron. Reliab.
,
42
(
4–5
), pp.
653
667
.
19.
Seal
,
S.
, and
Mantooth
,
H. A.
,
2017
, “
High Performance Silicon Carbide Power Packaging—Past Trends, Present Practices, and Future Directions
,”
Energies
,
10
(
3
), p.
341
.
20.
Yin
,
L.
,
Nagarkar
,
K.
,
Gowda
,
A.
,
Kapusta
,
C.
,
Tuominen
,
R.
,
Gillespie
,
P.
,
Sherman
,
D.
, Johnson, T., Hayashibe, S., Ito, H., and Arai, T.,
2017
, “
Reliability of POL-kW Power Modules
,”
International Conference on Electronics Packaging
(
ICEP
), Yamagata, Japan, Apr. 19–22, pp. 106–111.
21.
Yin
,
L.
,
Nagarkar
,
K.
,
Kapusta
,
C.
,
Tuominen
,
R.
,
Gowda
,
A.
,
Hayashibe
,
S.
,
Ito
,
H.
, and
Arai
,
T.
,
2017
, “
POL-kW Modules for High Power Applications
,”
IEEE 67th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 30–June 2, pp. 1497–1503.
22.
Schulz-Harder
,
J.
,
2003
, “
Advantages and New Development of Direct Bonded Copper Substrates
,”
Microelectron. Reliab.
,
43
(
3
), pp.
359
365
.
23.
Herrmann
,
T.
,
Feller
,
M.
,
Lutz
,
J.
,
Bayerer
,
R.
, and
Licht
,
T.
,
2007
, “
Power Cycling Induced Failure Mechanisms in Solder Layers
,”
European Conference on Power Electronics and Applications
, Aalborg, Denmark, Sept. 2–5, pp. 1–7.
You do not currently have access to this content.