We have investigated a novel hybrid nanocomposite thermal interface material (TIM) that consists of silver nanoparticles (AgNPs), silver nanoflakes (AgNFs), and copper microparticles (CuMPs). Continuous metallic network form while AgNPs and AgNFs fuse to join bigger CuMPs upon hot compression, resulting in superior thermal and mechanical performances. The assembly temperature is as low as 125 °C due to the size effect of silver nanoparticulates. The thermal conductivity, k, of the hybrid nanocomposite TIMs is found to be in the range of 15–140 W/mK, exceeding best-performing commercial thermal greases, while comparable to high-end solder TIMs. The dependence of k on the solid packing density and the volume fraction of voids is discussed through comparing to model predictions.

References

1.
Moore
,
G. E.
,
1965
, “
Cramming More Components Onto Integrated Circuits
,”
Electron.
,
38
(
8
), p.
114
.
2.
Mahajan
,
R.
,
Chiu
,
C.-P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8)
, pp.
1476
1486
.
3.
Shakouri
,
A.
,
2006
, “
Nanoscale Thermal Transport and Microrefrigerators on a Chip
,”
Proc. IEEE.
,
94
(
8
), pp.
1613
1638
.
4.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE.
,
94
(
8
), pp.
1571
1586
.
5.
Gilmore
,
D. G.
,
2002
,
Spacecraft Thermal Control Handbook
, Vol.
I
,
Fundamental Technologies
,
El Segundo, CA
.
6.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
(
3
), pp.
215
222
.
7.
Abadi
,
P.
,
Pour
,
S. S.
,
Leong
,
C.-K.
, and
Chung
,
D. D. L.
,
2009
, “
Factors That Govern the Performance of Thermal Interface Materials
,”
J. Electron. Mater.
,
38
(
1
), pp.
175
192
.
8.
Chung
,
D. D. L.
,
2001
, “
Thermal Interface Materials
,”
J. Mater. Eng. Perform.
,
10
(
1
), pp.
56
59
.
9.
Sarvar
,
F.
,
Whalley
,
D. C.
, and
Conway
,
P. P.
,
2006
, “
Thermal Interface Materials—A Review of the State of the Art
,”
First Electronics System Integration Technology Conference
, Dresden, Germany, Sept. 5–7, pp.
1292
1302
.
10.
Suh
,
J.-O.
,
Dillon
,
R. P.
, and
Tseng
,
S.
,
2015
, “
Thermal Interface Materials Selection and Application Guidelines: In Perspective of Xilinx Virtex-5QV Thermal Management
,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Technical Report No.
JPL-Publ-15-02
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160001771.pdf
11.
Pan
,
C.-A.
,
Yeh
,
C.-T.
,
Qiu
,
W.-C.
,
Lin
,
R.-Z.
,
Hung
,
L.-Y.
,
Ng
,
K.-T.
,
Lin
,
C. F.
,
Chung
,
C. K.
,
Jiang
,
D.-S.
, and
Hsiao
,
C. S.
,
2017
, “
Assembly and Reliability Challenges for Next Generation High Thermal TIM Materials
,”
67th IEEE Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 30–June 2, pp.
2033
2039
.
12.
Webb
,
R. L.
, and
Gwinn
,
J. P.
,
2002
, “
Low Melting Point Thermal Interface Material
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp.
671
676
.
13.
Ma
,
H.
, and
Suhling
,
J. C.
,
2009
, “
A Review of Mechanical Properties of Lead-Free Solders for Electronic Packaging
,”
J. Mater. Sci.
,
44
(
5
), pp.
1141
1158
.
14.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.
15.
Yang
,
D. J.
,
Zhang
,
Q.
,
Chen
,
G.
,
Yoon
,
S. F.
,
Ahn
,
J.
,
Wang
,
S. G.
,
Zhou
,
Q.
,
Wang
,
Q.
, and
Li
,
J. Q.
,
2002
, “
Thermal Conductivity of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B.
,
66
(
16
), p.
165440
.
16.
Xu
,
X.
,
Chen
,
J.
,
Zhou
,
J.
, and
Li
,
B.
,
2018
, “
Thermal Conductivity of Polymers and Their Nanocomposites
,”
Adv. Mater.
,
30
(
17
), p.
e1705544
.
17.
Tu
,
K.-N.
,
Gusak
,
A. M.
, and
Li
,
M.
,
2003
, “
Physics and Materials Challenges for Lead-Free Solders
,”
J. Appl. Phys.
,
93
(
3
), pp.
1335
1353
.
18.
Gain
,
A. K.
, and
Zhang
,
L.
,
2016
, “
Interfacial Microstructure, Wettability and Material Properties of Nickel (Ni) Nanoparticle Doped Tin–Bismuth–Silver (Sn–Bi–Ag) Solder on Copper (Cu) Substrate
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
4
), pp.
3982
3994
.
19.
Dutta
,
I.
,
Raj
,
R.
,
Kumar
,
P.
,
Chen
,
T.
,
Nagaraj
,
C. M.
,
Liu
,
J.
,
Renavikar
,
M.
, and
Wakharkar
,
V.
,
2009
, “
Liquid Phase Sintered Solders With Indium as Minority Phase for Next Generation Thermal Interface Material Applications
,”
J. Electron. Mater.
,
38
(
12
), pp.
2735
2745
.
20.
Suganuma
,
K.
,
Kim
,
S.-J.
, and
Kim
,
K.-S.
,
2009
, “
High-Temperature Lead-Free Solders: Properties and Possibilities
,”
J. Miner., Met. Mater. Soc.
,
61
(
1
), pp.
64
71
.
21.
Blazej
,
D.
,
2003
, “
Thermal Interface Materials
,”
Electron. Cooling.
,
9
(
3
), pp.
3
14
.https://www.electronics-cooling.com/2003/11/thermal-interface-materials/#
22.
Pharr
,
M.
,
Zhao
,
K.
,
Suo
,
Z.
,
Ouyang
,
F.-Y.
, and
Liu
,
P.
,
2011
, “
Concurrent Electromigration and Creep in Lead-Free Solder
,”
J. Appl. Phys.
,
110
(
8
), p.
083716
.
23.
Shi
,
Y.
,
Liu
,
J.
,
Yan
,
Y.
,
Xia
,
Z.
,
Lei
,
Y.
,
Guo
,
F.
, and
Li
,
X.
,
2008
, “
Creep Properties of Composite Solders Reinforced With Nano- and Microsized Particles
,”
J. Electron. Mater.
,
37
(
4
), pp.
507
514
.
24.
Liu
,
J.
,
Guo
,
F.
,
Yan
,
Y.
,
Wang
,
W. B.
, and
Shi
,
Y.
,
2004
, “
Development of Creep-Resistant, Nanosized Ag Particle-Reinforced Sn–Pb Composite Solders
,”
J. Electron. Mater.
,
33
(
9
), pp.
958
963
.
25.
Hu
,
X.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2004
, “
Thermal Characterization of Eutectic Alloy Thermal Interface Materials With Void-Like Inclusions
,” 20th
IEEE
Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 9–11.
26.
Due
,
J.
, and
Robinson
,
A. J.
,
2013
, “
Reliability of Thermal Interface Materials: A Review
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
455
463
.
27.
Fleischer
,
A. S.
,
Chang
,
L.-H.
, and
Johnson
,
B. C.
,
2006
, “
The Effect of Die Attach Voiding on the Thermal Resistance of Chip Level Packages
,”
Microelectron. Reliab.
,
46
(
5–6
), pp.
794
804
.
28.
Lin
,
D.
,
Liu
,
S.
,
Guo
,
T.
,
Wang
,
G.
,
Srivatsan
,
T. S.
, and
Petraroli
,
M.
,
2003
, “
An Investigation of Nanoparticles Addition on Solidification Kinetics and Microstructure Development of Tin-Lead Solder
,”
Mater. Sci. Eng. A.
,
360
(
1–2
), pp.
285
292
.
29.
Zhang
,
L.
, and
Tu
,
K.-N.
,
2014
, “
Structure and Properties of Lead-Free Solders Bearing Micro and Nano Particles
,”
Mater. Sci. Eng. R: Rep.
,
82
, pp.
1
32
.
30.
Wang
,
H.
,
Sammakia
,
B.
,
Liu
,
Y.
, and
Yang
,
K.
,
2012
, “
Composite Thermal Interface Material System and Method Using Nano-Scale Components
,” Research Foundation of State University of New York, New York, U.S. Patent No.
US008129001B2
.https://patents.google.com/patent/US8129001B2/en
31.
Goia
,
D. V.
,
2004
, “
Preparation and Formation Mechanisms of Uniform Metallic Particles in Homogeneous Solutions
,”
J. Mater. Chem.
,
14
(
4
), pp.
451
458
.
32.
Zhang
,
T.
,
Sammakia
,
B.
, and
Wang
,
H.
, May,
2014
, “
Nanocomposite Pastes for Thermal and Mechanical Bonding
,”
64th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 27–30, pp.
2175
2180
.
33.
Davidson
,
D. A.
,
2006
,
Fluid Dynamics and Heat Transfer Considerations for Gel Thermal Interface Materials
,
Binghamton University
,
Binghamton, NY
.
34.
Zhao
,
D.
,
Qian
,
X.
,
Gu
,
X.
,
Jajja
,
S. A.
, and
Yang
,
R.
,
2016
, “
Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials
,”
ASME J. Electron. Packag.
,
138
(
4
), p.
040802
.
35.
Khuu
,
V.
,
Osterman
,
M.
,
Bar-Cohen
,
A.
, and
Pecht
,
M.
,
2011
, “
Considerations in the Use of the Laser Flash Method for Thermal Measurements of Thermal Interface Materials
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
7
), pp.
1015
1028
.
36.
Devpura
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2000
, “
Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology
,”
Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), Las Vegas, NV, May 23–26, pp.
21
28
.
37.
Warzoha
,
R. J.
, and
Donovan
,
B. F.
,
2017
, “
High Resolution Steady-State Measurements of Thermal Contact Resistance Across Thermal Interface Material Junctions
,”
Rev. Sci. Instrum.
,
88
(
9
), p.
094901
.
38.
Liu
,
B.
,
Dong
,
L.
,
Xi
,
Q.
,
Xu
,
X.
,
Zhou
,
J.
, and
Li
,
B.
,
2018
, “
Thermal Transport in Organic/Inorganic Composites
,”
Front. Energy
,
12
(
1
), pp.
72
86
.
39.
Siewert
,
T.
,
Liu
,
S.
,
Smith
,
D. R.
, and
Madeni
,
J. C.
,
2002
, “
Database for Solder Properties With Emphasis on New Lead-Free Solders, Release 4.0
,” National Institute of Standards and Technology, Boulder, CO.
40.
Streb
,
F.
,
Schweitzer
,
D.
,
Manfred
,
M.
, and
Lampke
,
T.
,
2017
, “
Evaluation of Characterization Methods for Solid Thermal Interface Materials
,” 33rd Thermal Measurement, Modeling & Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 13–17, pp.
1
8
.
41.
Gektin
,
V.
,
2005
, “
Thermal Management of Voids and Delamination in TIMs
,”
ASME
Paper No. IPACK2005-73446.
42.
Prasher
,
R. S.
,
Koning
,
P.
,
Shipley
,
J.
, and
Devpura
,
A.
,
2003
, “
Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction
,”
ASME J. Electron. Packag.
,
125
(
3
), pp.
386
391
.
43.
Tavman
,
I.
, and
Evgin
,
T.
,
2015
, “
Metal Particle Filled, Thermally Conductive Polymer Composites for Electronic Packaging Applications
,”
21st International Symposium for Design and Technology in Electronic Packaging
(
SIITME
), Brasov, Romania, Oct. 22–25, pp.
31
35
.
44.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
,
Oxford
,
UK
.
45.
Pietrak
,
K.
, and
Wiśniewski
,
T. S.
,
2015
, “
A Review of Models for Effective Thermal Conductivity of Composite Materials
,”
J. Power Technol.
,
95
(
1
), pp.
14
24
.http://papers.itc.pw.edu.pl/index.php/JPT/article/view/463/637
46.
Lewis
,
T. B.
, and
Nielsen
,
L. E.
,
1970
, “
Dynamic Mechanical Properties of Particulate-Filled Composites
,”
J. Appl. Polym. Sci.
,
14
(
6
), pp.
1449
1471
.
47.
Fricke
,
H.
,
1924
, “
A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems—Part I: The Electric Conductivity of a Suspension of Homogeneous Spheroids
,”
Phys. Rev.
,
24
(
5
), pp.
575
587
.
48.
Vinh-Thang
,
H.
, and
Kaliaguine
,
S.
,
2013
, “
Predictive Models for Mixed-Matrix Membrane Performance: A Review
,”
Chem. Rev.
,
113
(
7
), pp.
4980
5028
.
49.
Pal
,
R.
,
2008
, “
Permeation Models for Mixed Matrix Membranes
,”
J. Colloid Interface Sci.
,
317
(
1
), pp.
191
198
.
50.
Maxwell Garnett
,
J. C.
,
1904
, “
Colours in Metal Glasses and Metallic Films
,”
Proc. R. Soc. London
,
73
(
488–496
), pp.
443
445
.
51.
Every
,
A. G.
,
Tzou
,
G.-Y.
,
Hasselman
,
D.
, and
Raj
,
R.
,
1992
, “
The Effect of Particle Size on the Thermal Conductivity of ZnS/Diamond Composites
,”
Acta Metall. Mater.
,
40
(
1
), pp.
123
129
.
52.
Bruggeman
,
D. A. G.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen (Calculation of Various Physical Constants of Heterogeneous Substances)
,”
Annalen Der Phys.
,
416
(
7
), pp.
636
664
.
53.
Landauer
,
R.
,
1978
, “
Electrical Conductivity in Inhomogeneous Media
,”
AIP Conf. Proc.
,
40
(
1
), pp.
2
45
.
54.
Nagabandi
,
N.
,
Yegin
,
C.
,
Feng
,
X.
,
King
,
C.
,
Kyun
,
O. J.
,
Narumanchi
,
S.
, and
Akbulut
,
M.
,
2017
, “
Metallic Nanocomposites as Next-Generation Thermal Interface Materials
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, p. 400.
55.
Saums
,
D. L.
, and
Jensen
,
T.
,
2017
, “
Testing, Selecting, and Applying Metallic Thermal Interface Materials for Harsh Environment Applications
,”
International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
(
PCIM
), Nuremberg, Germany, May 16–18, pp.
960
968
.https://ieeexplore.ieee.org/document/7990800/
You do not currently have access to this content.