The diamond abrasive process which is applied onto the silicon wafer edge, the so called “edge trimming,” is an important step in three-dimensional microelectronics processing technology, due to the significant thickness reduction of the wafer after thinning. Nevertheless, the wafer edge defects caused by edge trimming have often been overlooked. Although the mechanisms of the formation of the defects in Si due to trimming may be similar to the ones caused by grinding, an in-depth study and risk assessment have not been done yet. In addition, the variety of stress relief processing options can give different morphology and defect removal behavior on the edge trimmed Si sidewall. In a first study, we used transmission electron microscopy and Raman spectroscopy to analyze the defects caused by edge trimming. We show the presence of a continuous layer of amorphous Si and of different phases of Si, caused by edge trimming. A comparison of the damage induced in the Si by two different integration schemes is also discussed. When polishing is used for stress release, the observed sidewall defects stay, since the polishing force is only applied on the top surface of the wafer. On the other hand, the damage is completely removed for the case of wet and dry etching. The surface chemical reactions occurring at the surface during these processes are also acting on the Si sidewall. These findings provide a workable edge trimming and stress relief method for permanently bonded wafers, with many industrial applications.

References

References
1.
Kagawa
,
Y.
,
Fujii
,
N.
,
Aoyagi
,
K.
,
Kobayashi
,
Y.
,
Nishi
,
S.
,
Todaka
,
N.
,
Takeshita
,
S.
,
Taura
,
J.
,
Takahashi
,
H.
,
Nishimura
,
K.
,
Tatani
,
M.
,
Kawamura
,
M.
,
Nakayama
,
H.
,
Nagano
,
T.
,
Ohno
,
K.
,
Iwamoto
,
H.
,
Kadomura
,
S.
, and
Hirayama
,
T.
,
2016
, “
Novel Stacked CMOS Image Sensor With Advanced Cu2Cu Hybrid Bonding
,”
IEEE International Electron Devices Meeting
(
IEDM
), San Francisco, CA, Dec. 3–7, pp. 8.4.1–8.4.4.
2.
Schmidt
,
M. A.
,
1998
, “
Wafer-to-Wafer Bonding for Microstructure Formation
,”
Proc. IEEE
,
86
(
8
), pp.
1575
1585
.
3.
Kim
,
S.-W.
,
Detalle
,
M.
,
Peng
,
L.
,
Nolmans
,
P.
,
Heylen
,
N.
,
Velenis
,
D.
,
Miller
,
A.
,
Beyer
,
G.
, and
Beyne
,
E.
,
2016
, “
Ultra-Fine Pitch 3D Integration Using Face-to-Face Hybrid Wafer Bonding Combined With a Via-Middle Through-Silicon-Via Process
,”
IEEE 66th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 31–June 3, p.
1180
.
4.
Wang
,
C.
, and
Suga
,
T.
,
2011
, “
Room-Temperature Direct Bonding Using Fluorine Containing Plasma Activation
,”
J. Electrochem. Soc.
,
158
(
5
), pp.
H525
H529
.
5.
Inoue
,
F.
,
Jourdain
,
A.
,
Peng
,
L.
,
Phommahaxay
,
A.
,
De Vos
,
J.
,
June Rebibis
,
K.
,
Miller
,
A.
,
Sleeckx
,
E.
,
Beyne
,
E.
, and
Uedono
,
A.
,
2017
, “
Influence of Si Wafer Thinning Processes on (Sub)Surface Defects
,”
Appl. Surf. Sci.
,
404
, pp.
82
87
.
6.
Pei
,
Z. J.
,
Fisher
,
G. R.
, and
Liu
,
J.
,
2008
, “
Grinding of Silicon Wafers: A Review From Historical Perspectives
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1297
1307
.
7.
Mizushima
,
Y.
,
Kim
,
Y.
,
Nakamura
,
T.
,
Sugie
,
R.
,
Hashimoto
,
H.
,
Uedono
,
A.
, and
Ohba
,
T.
,
2014
, “
Impact of Back-Grinding-Induced Damage on Si Wafer Thinning for Three-Dimensional Integration
,”
Jpn. J. Appl. Phys.
,
53
(
5S2
), p.
05GE04
.
8.
Mizushima
,
Y.
,
Kim
,
Y.
,
Nakamura
,
T.
,
Uedono
,
A.
, and
Ohba
,
T.
,
2017
, “
Behavior of Copper Contamination on Backside Damage for Ultra-Thin Silicon Three Dimensional Stacking Structure
,”
Microelectron. Eng.
,
167
, pp.
23
31
.
9.
Kim
,
Y.-S.
,
Maeda
,
N.
,
Kitada
,
H.
,
Fujimoto
,
K.
,
Kodama
,
S.
,
Kawai
,
A.
,
Arai
,
K.
,
Suzuki
,
K.
,
Nakamura
,
T.
, and
Ohba
,
T.
,
2013
, “
Advanced Wafer Thinning Technology and Feasibility Test for 3D Integration
,”
Microelectron. Eng.
,
107
, pp.
65
71
.
10.
Pei
,
Z. J.
, and
Strasbaugh
,
A.
,
2001
, “
Fine Grinding of Silicon Wafers
,”
Int. J. Mach. Tools Manuf.
,
41
(
5
), pp.
659
672
.
11.
Pei
,
Z. J.
,
2002
, “
A Study on Surface Grinding of 300 mm Silicon Wafers
,”
Int. J. Mach. Tools Manuf.
,
42
(
3
), pp.
385
393
.
12.
Pei
,
Z. J.
,
Billingsley
,
S. R.
, and
Miura
,
S.
,
1999
, “
Grinding Induced Subsurface Cracks in Silicon Wafers
,”
Int. J. Mach. Tools Manuf.
,
39
(
7
), pp.
1103
1116
.
13.
Zhou
,
L.
,
Tian
,
Y. B.
,
Huang
,
H.
,
Sato
,
H.
, and
Shimizu
,
J.
,
2012
, “
A Study on the Diamond Grinding of Ultra-Thin Silicon Wafers
,”
Proc. Inst. Mech. Eng., Part B
,
226
(
1
), p.
66
.
14.
Zarudi
,
I.
, and
Zhang
,
L. C.
,
1998
, “
Effect of Ultraprecision Grinding on the Microstructural Change in Silicon Monocrystals
,”
J. Mater. Process. Technol.
,
84
(
1–3
), pp.
149
158
.
15.
Ren
,
Q.
,
Wei
,
X.
,
Xie
,
X.
, and
Hu
,
W.
,
2017
, “
Simulation Research on Micro Contact Based on Force in Silicon Wafer Rotation Grinding
,”
Mater. Sci. Eng.
,
250
, p.
012016
.
16.
Yang
,
Y.
,
De Munck
,
K.
,
Cotrin Teixeira
,
R.
,
Swinnen
,
B.
,
Verlinden
,
B.
, and
De Wolf
,
I.
,
2008
, “
Process Induced Sub-Surface Damage in Mechanically Ground Silicon Wafers
,”
Semicond. Sci. Technol.
,
23
(
7
), p.
075038
.
17.
Gao
,
S.
,
Kang
,
R.
,
Dong
,
Z.
, and
Zhang
,
B.
,
2013
, “
Edge Chipping of Silicon Wafers in Diamond Grinding
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
31
37
.
18.
Inoue
,
F.
,
Jourdain
,
A.
,
Visker
,
J.
,
Peng
,
L.
,
Moeller
,
B.
,
Yokoyama
,
K.
,
Phommahaxay
,
A.
,
June Rebibis
,
K.
,
Miller
,
A.
,
Beyne
,
E.
, and
Sleeckx
,
E.
,
2017
, “
Edge Trimming for Surface Activated Dielectric Bonded Wafers
,”
Microelectron. Eng.
,
167
, pp.
10
16
.
19.
Lei
,
W.-S.
,
Kumar
,
A.
, and
Yalamanchili
,
R.
,
2012
, “
Die Singulation Technologies for Advanced Packaging: A Critical Review
,”
J. Vac. Sci. Technol., B
,
30
(
4
), p.
040801
.
20.
Kim
,
S.-W.
,
Peng
,
L.
,
Miller
,
A.
,
Beyer
,
G.
,
Beyne
,
E.
, and
Lee
,
C.-S.
,
2015
, “
Permanent Wafer Bonding in the Low Temperature by Using Various Plasma Enhanced Chemical Vapour Deposition Dielectrics
,”
3D Systems Integration Conference
(
3DIC
), Sendai, Japan, Aug. 31–Sept. 2, pp. TS7.2.1–TS7.2.4.
21.
Peng
,
L.
,
Kim
,
S.-W.
,
Inoue
,
F.
,
Wang
,
T.
,
Phommahaxay
,
A.
,
Verdonck
,
P.
,
Jourdain
,
A.
,
Vos
,
J. D.
,
Sleeckx
,
E.
,
Struyf
,
H.
,
Miller
,
A.
,
Beyer
,
G.
, and
Beyne
,
E.
,
2016
, “
Development of Multi-Stack Dielectric Wafer Bonding
,”
17th International Conference on Electronic Packaging Technology
(
ICEPT
), Wuhan, China, Aug. 16–19, p.
22
.
22.
Inoue
,
F.
,
Peng
,
L.
,
Phommahaxay
,
A.
,
Kim
,
S.-W.
,
Vos
,
J. D.
,
Sleeckx
,
E.
,
Miller
,
A.
,
Beyer
,
G.
, and
Beyne
,
E.
,
2017
, “
Characterization of Inorganic Dielectric Layers for Low Thermal Budget Wafer-to-Wafer Bonding
,”
Fifth Low Temperature Bonding for 3D Integration
(
LTB-3D
), Tokyo, Japan, May 16–18, p.
24
.
23.
Jang
,
J. I.
,
Lance
,
M. J.
,
Wen
,
S.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
2005
, “
Indentation-Induced Phase Transformations in Silicon: Influences of Load, Rate and Indenter Angle on the Transformation Behavior
,”
Acta Mater.
,
53
(
6
), pp.
1759
1770
.
24.
Das
,
C. R.
,
Hsu
,
H. C.
,
Dhara
,
S.
,
Bhaduri
,
A. K.
,
Raj
,
B.
,
Chen
,
L. C.
,
Chen
,
K. H.
,
Albert
,
S. K.
,
Ray
,
A.
, and
Tzeng
,
Y.
,
2009
, “
A Complete Raman Mapping of Phase Transitions in Si Under Indentation
,”
J. Raman Spectrosc.
,
41
, p.
3
.
25.
Kailer
,
A.
,
Gogotsi
,
Y. G.
, and
Nickel
,
K. G.
,
1997
, “
Phase Transformations of Silicon Caused by Contact Loading
,”
J. Appl. Phys.
,
81
(
7
), p. 3057.
26.
Raj Marks
,
M.
,
Hassan
,
Z.
, and
Cheong
,
K.-Y.
,
2014
, “
Cu Retardation Performance of Extrinsic Gettering Layers in Thinned Wafers Evaluated by Transient Capacitance Measurement
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
12
), p.
12
.
27.
Ogawa
,
H.
,
Yanagisawa
,
M.
,
Kikuchi
,
J.
, and
Horiike
,
Y.
,
2003
, “
Study on the Mechanism of Silicon Chemical Mechanical Polishing Employing In Situ Infrared Spectroscopy
,”
Jpn. J. Appl. Phys.
,
42
(
Pt 1, 2A
), p.
587
.
28.
Watanabe
,
N.
,
Miyazaki
,
T.
,
Yoshikawa
,
K.
, and
Aoyagi
,
M.
,
2014
, “
Damage Evaluation of Wet-Chemical Si-Wafer Thinning/Backside Via Exposure Process
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
4
), pp. 741–747.
29.
Michaud
,
P. T.
, and
Babic
,
D.
,
1998
, “
A Raman Study of Etching Silicon in Aqueous Tetramethylammonium Hydroxide
,”
J. Electrochem. Soc.
,
145
(
11
), pp. 4040–4043.
30.
Draney
,
N. R.
,
Liu
,
J. J.
, and
Jiang
,
T.
,
2004
, “
Experimental Investigation of Bare Silicon Wafer Warp
,”
IEEE
Workshop on Microelectronics and Electron Devices
, Boise, ID, Apr. 16, pp. 120–123.
31.
Jiun
,
H. H.
,
Ahmad
,
I.
,
Jalar
,
A.
, and
Omar
,
G.
,
2006
, “
Effect of Wafer Thinning Methods Towards Fracture Strength and Topography of Silicon Die
,”
Microelectron. Reliab.
,
46
(
5–6
), pp.
836
845
.
You do not currently have access to this content.