The aim of this paper is to model moisture ingress into a closed electronic enclosure under isothermal and non-isothermal conditions. As a consequence, an in-house code for moisture transport is developed using the Resistor-Capacitor (RC) method, which is efficient as regards computation time and resources. First, an in-house code is developed to model moisture transport through the enclosure walls driven by diffusion, which is based on the Fick's first and second law. Thus, the model couples a lumped analysis of moisture transport into the box interior with a modified one-dimensional (1D) analogy of Fick's second law for diffusion in the walls. Thereafter, under non-isothermal conditions, the moisture RC circuit is coupled with the same configuration of thermal RC circuit. The paper concerns the study of the impact of imperfections in the enclosure for the whole diffusion process. Moreover, a study of the impact of wall thickness, different diffusion coefficient, and initial conditions in the wall for the moisture transport is accomplished. Comparison of modeling and experimental results showed that the RC model is very applicable for simple and rough enclosure design. Furthermore, the experimental and modeling results indicate that the imperfections, with certain limits, do not have a significant effect on the moisture transport. The modeling of moisture transport under non-isothermal conditions shows that the internal moisture oscillations follow ambient temperature changes albeit with a delay. Although, moisture ingress is slightly dependent on ambient moisture oscillations; however, it is not so dominant until equilibrium is reached.

References

References
1.
Tencer
,
M.
, and
Moss
,
J. S.
,
2002
, “
Humidity Management of Outdoor Electronic Equipment: Methods, Pitfalls, and Recommendations
,”
J. Comp. Packag. Technol.
,
25
(
1
), pp.
66
72
.
2.
Ambat
,
R.
,
Jensen
,
S. G.
, and
Møller
,
P.
,
2008
, “
Corrosion Reliability of Electronic Systems
,”
ECS Trans.
,
6
(
24
), pp.
17
28
.
3.
Hoge
,
C. E.
,
1990
, “
Corrosion Criteria for Electronic Packaging—Part I: A Framework for Corrosion of Integrated Circuits
,”
IEEE Trans. Comp. Hybrids Manuf. Technol.
,
13
(
4
), pp.
1090
1097
.
4.
Klinger
,
D. J.
,
1991
, “
Humidity Acceleration Factor for Plastic Packaged Electronic Devices
,”
Qual. Reliab. Eng. Int.
,
7
(
5
), pp.
365
370
.
5.
Adams
,
J.
,
Salvador
,
M.
,
Lucera
,
L.
,
Langner
,
S.
,
Spyropoulos
,
G. D.
,
Fecher
,
F. W.
,
Voigt
,
M. M.
,
Dowland
,
S. A.
,
Osvet
,
A.
,
Egelhaaf
,
H.-J.
, and
Brabec
,
C. J.
,
2015
, “
Water Ingress in Encapsulated Inverted Organic Solar Cells: Correlating Infrared Imaging and Photovoltaic Performance
,”
Adv. Energy Mater.
,
5
(
20
), p.
1501065
.
6.
Asadpour
,
R.
,
Chavali
,
R. V. K.
, and
Alam
,
M. A.
,
2016
, “
Physics-Based Computational Modeling of Moisture Ingress in Solar Modules: Location-Specific Corrosion and Delamination
,”
IEEE 43rd Photovoltaic Specialists Conference
(
PVSC
), Portland, OR, June 5–10, pp. 840–843.
7.
Liu
,
Y.
,
Ji
,
Z.
,
Chen
,
P.
,
Wang1
,
X.
,
Ye
,
N.
, and
Chiu
,
C.-T.
,
2016
, “
Moisture Induced Interface Delamination for EMI Shielding Package
,”
IEEE CPMT Symposium Japan
(
ICSJ
), Kyoto, Japan, Nov. 7–9, pp.
217
220
.
8.
Electronics Cooling, 2013, “Electronic Performance Impact of Elevated Humidity Environments—Implications for Free Air Cooling of Data Centers,” Electronics Cooling, Plymouth Meeting, PA,
accessed Jan. 5, 2016,
http://www.electronics-cooling.com/2013/06/electronic-performance-impact-of-elevated-humidity-environments-implications-for-free-air-cooling-of-data-centers/
9.
Punch
,
J.
,
Grimes
,
R.
,
Heaslip
,
G.
,
Galkin
,
T.
,
Vakevainen
,
K.
,
Kyyhkynen
,
V.
, and
Elonen
,
E.
,
2005
, “
Transient Hygrothermal Behavior of Portable Electronics
,”
Sixth International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electrons and Micro-Systems
(
EUROSIME
), Berlin, Apr. 18–20, pp.
398
405
.
10.
Jacobsen
,
J. B.
,
Peter Krog
,
J.
,
Hjarbæk Holm
,
A.
,
Rimestad
,
L.
, and
Riis
,
A.
,
2014
, “Climate-Protective Packaging: Using Basic Physics to Solve Climatic Challenges for Electronics in Demanding Applications,”
J. Industr. Electr. Mag.
,
8
(
3
), pp.
51
59
.
11.
Peter
,
N.
,
Toth
,
P.
,
Kovacs
., and
Kristof
,
B. G.
,
2016
, “
Implementation of Moisture Diffusion Model in Multi-Material System Including Air Cavities
,”
22nd International Workshop on Thermal Investigations of ICs and Systems
(
THERMINIC
), Budapest, Hungary, Sept. 21–23, pp. 224–229.
12.
Barink
,
M.
,
Mavinkurve
,
A.
, and
Janssen
,
J.
,
2016
, “
Predicting Non-Fickian Moisture Diffusion in EMCs for Application in Micro-Electronic Devices
,”
Microelectron. Reliab.
,
62
, pp.
45
49
.
13.
Han
,
B.
, and
Kim
,
D.-S.
,
2017
, “
Moisture Ingress, Behavior, and Prediction Inside Semiconductor Packaging: A Review
,”
ASME J. Electron. Packag.
,
139
(
1
), p.
010802
.
14.
Liu
,
D.
,
Wang
,
J.
,
Liu
,
R.
, and
Park
,
S. B.
,
2016
, “
An Examination on the Direct Concentration Approach to Simulating Moisture Diffusion in a Multi-Material System
,”
Microelectron. Reliab.
,
60
, pp.
109
115
.
15.
Luiten
,
W.
, and
Kadijk
,
S.
,
2009
, “
The Better Box Model: An Analytical Estimation of Temperature and Flow in a Free Convection Air Cooled Electronics Enclosure
,”
25th Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
70
75
.
16.
Bayerer
,
R.
,
Lassmann
,
M.
, and
Kremp
,
S.
,
2014
, “
Transient Hygro-Thermal-Response of Power Modules in Inverters—Mission Profiling for Climate and Power Loading
,”
Eighth International Conference on Integrated Power Systems
(
CIPS
), Nuremberg, Germany, Feb. 25–27, pp.
1
8
.https://ieeexplore.ieee.org/document/6776820/
17.
Bayerer
,
R.
,
Lassmann
,
M.
, and
Kremp
,
S.
,
2016
, “
Transient Hygrothermal-Response of Power Modules in Inverters—The Basis for Mission Profiling Under Climate and Power Loading
,”
IEEE Trans. Power Electr.
,
31
(
1
), pp.
613
620
.
18.
Bacher
,
P.
, and
Madsen
,
H.
,
2011
, “Identifying Suitable Models for the Heat Dynamics of Buildings,”
Energy Build.
,
43
(
7
), pp.
1511
1522
.
19.
Barclay
,
M.
,
Holcroft
,
N.
, and
Shea
,
A. D.
,
2014
, “
Methods to Determine Whole Building Hygrothermal Performance of Hempelime Buildings
,”
Build. Environ.
,
80
, pp.
204
212
.
20.
Gudum
,
C.
,
2003
, “
Moisture Transport and Convection in Building Envelopes
,” Ph.D. thesis, Technical University of Denmark, Kgs. Lyngby, Denmark.
21.
Weitzmann
,
P.
,
2004
, “
Modelling Building Integrated Heating and Cooling Systems
,” Technical University of Denmark, Kgs. Lyngby, Denmark, Report No.
DTU R-091
.http://www.byg.dtu.dk/~/media/Institutter/Byg/publikationer/PhD/byg_r091.ashx?la=da
22.
Zhong
,
Z.
, and
Braun
,
J. E.
,
2008
, “
Combined Heat and Moisture Transport Modeling for Residential Buildings
,”
Ph.D. dissertation
, Purdue University, West Lafayette, IN, p.
82
.https://docs.lib.purdue.edu/dissertations/AAI3344173/
23.
Rode
,
C.
, and
Sørensen
,
K. G.
,
2010
, “
Whole Building Hygrothermal Simulation Model
,”
American Society of Heating, Refrigeration and Air-Conditioning Engineers, Recent Advances in Energy Simulation: Building Loads, Symposium
, Chicago, IL, Paper No.
CH-03-09
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.795&rep=rep1&type=pdf
24.
Tencer
,
M.
,
1994
, “
Moisture Ingress Into Nonhermetic Enclosures and Packages. A Quasi-Steady State Model for Diffusion and Attenuation of Ambient Humidity Variations
,”
IEEE
44th International Conference on Electronic Components and Technology
, Washington, DC, May 1–4, pp.
196
209
.
25.
Greenhouse
,
H.
,
2000
,
Hermeticity of Electronic Packages
,
Elsevier
,
New York
.
26.
Tsividis
,
Y.
, and
Milios
,
J.
,
2013
, “
A Detailed Look at Electrical Equivalents of Uniform Electrochemical Diffusion Using Nonuniform Resistance–Capacitance Ladders
,”
J. Electroanal. Chem.
,
707
, pp.
156
165
.
27.
Sharafian
,
A.
, and
Bahrami
,
M.
,
2013
, “
Adsorbate Uptake and Mass Diffusivity of Working Pairs in Adsorption Cooling Systems
,”
Int. J. Heat Mass Transfer
,
59
, pp.
262
271
.
28.
Kang
,
Y. S.
,
Hong
,
J.-M.
,
Jang
,
J.
, and
Kim
,
U. Y.
,
1996
, “
Analysis of Facilitated Transport in Solid Membranes With Fixed Site Carriers 1. Single RC Circuit Model
,”
J. Membr. Sci.
,
109
(
2
), pp.
149
157
.
29.
Hong
,
J.-M.
,
Kang
,
Y. S.
,
Jang
,
J.
, and
Kim
,
U. Y.
,
1996
, “
Analysis of Facilitated Transport in Polymeric Membrane With Fixed Site Carrier 2. Series RC Circuit Model
,”
J. Membr. Sci.
,
109
(
2
), pp.
159
163
.
30.
Hong
,
S. U.
,
Won
,
J.
,
Park
,
H. C.
, and
Kang
,
Y. S.
,
1999
, “
Estimation of Penetrant Transport Properties Through Fixed Site Carrier Membranes Using the RC Circuit Model and Sensitivity Analysis
,”
J. Membr. Sci.
,
163
(
1
), pp.
103
108
.
31.
Dahan
,
N.
,
Vanhoestenberghe
,
A.
, and
Donaldson
,
N.
,
2012
, “
Moisture Ingress Into Packages With Walls of Varying Thickness and/or Properties: A Simple Calculation Method
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
11
), pp.
1796
1801
.
32.
Guenin, B., 2012, “Application of Transient Thermal Methods to Moisture Diffusion Calculations, Part I,” Electronics Cooling, Plymouth Meeting, PA, accessed Jan. 5, 2016, http://www.electronics-cooling.com/2012/12/application-of-transient-thermal-methods-to-moisture-diffusion-calculations-part-i/
33.
Guenin, B., 2013, “Calculation Corner—Application of Transient Thermal Methods to Moisture Diffusion Calculations, Part 2,” Electronics Cooling, Plymouth Meeting, PA, accessed Jan. 5, 2016, http://www.electronics-cooling.com/2013/03/calculation-corner-application-of-transient-thermal-methods-to-moisture-diffusion-calculations-part-2/
34.
Wilson, J., 2007, “Moisture Permeation in Electronics,” Electronics Cooling, Plymouth Meeting, PA, accessed Jan. 5, 2016, http://www.electronics-cooling.com/2007/05/moisture-permeation-in-electronics/
35.
Nagel
,
L. W.
, and
Pederson
,
D. O.
,
1973
,
SPICE (Simulation Program With Integrated Circuit Emphasis
,
University of California
,
CA, Berkeley
.
36.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
,
2nd ed.
,
Oxford University Press
,
Oxford, UK
, p.
2
.
37.
Drofenik
,
U.
, and
Kolar
,
J. W.
,
2003
, “
Teaching Thermal Design of Power Electronic Systems With Web-Based Interactive Educational Software
,”
Applied Power Electronics Conference and Exposition
(
APEC
), Miami Beach, FL, Feb. 9–13, pp.
1029
1036
.
38.
Hattel
,
J.
,
2005
,
Fundamentals of Numerical Modelling of Casting Processes
,
1st ed.
,
Polyteknisk Forlag
,
Lyngby, Denmark
, Chap. 3.
39.
Comin
,
J.
,
1985
,
Polymer Permeability
,
Chapman&Hall
,
London
, Chaps. 2, 4, 8.
40.
MarkusSchmidt
,
D.
,
Lunz
,
M.
, and
Becker
,
K. U.
,
2016
, “
A New Method to Model Transient Multi-Material Moisture Transfer in Automotive Electronics Applications
,”
17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EUROSIME
), Montpellier, France, Apr. 18–20, p.
7463322
.
41.
Wong
,
E. H.
, and
Park
,
S. B.
,
2016
, “
Moisture Diffusion Modeling—A Critical Review
,”
Microelectronics Reliability
, Vol. 65, pp. 318–326.
42.
Carroll
,
J.
,
1991
, “
What is Henry's Law
,”
Chem. Eng. Prog.
,
87
(
9
), pp.
48
52
.
43.
Gibbs
,
J.
,
1961
, “
The Scientific Papers of J Willard Gibbs
,”
Thermodynamics
, Vol.
I
,
Dover
,
New York Mineola, NY
.
44.
Job
,
G.
, and
Herrmann
,
F.
,
2006
, “
Chemical Potential—A Quantity in Search of Recognition
,”
Eur. J. Phys.
,
27
(
2
), p.
353
.
45.
CENELEC
,
2000
, “
Degree of Protection Provided by Enclosures
,”
CENELEC
,
Brussels, Belgium
, Standard No. IEC 60529:1989/A1:1999.
46.
Conseil-Gudla
,
H.
,
Staliulionis
,
Z.
,
Jellesen
,
M. S.
,
Jabbari
,
M.
,
Hattel
,
J. H.
, and
Ambat
,
R.
,
2017
, “
Humidity Buildup in Electronic Enclosures Exposed to Constant Conditions
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
3
), pp. 412–423.
47.
Mao
,
Z.
,
Luo
,
X.
,
Yang
,
J.
, and
Liu
,
S.
,
2010
, “
Moisture Diffusivity Analysis of Polycarbonate for LED Lens
,”
11th International Conference on Electronic Packaging Technology
and High Density Packaging (
ICEPT-HDP
), Xi'an, China, Aug. 16–19, pp. 1080–1087.
48.
Moon
,
S. I.
, and
Extrand
,
C. W.
,
2009
, “Water Vapor Permeation Resistance of Polycarbonate at Various Temperatures,”
Ind. Eng. Chem. Res.
,
48
(
19
), pp.
8961
8965
.
49.
Golovoy
,
A.
, and
Zinbo
,
M.
,
1989
, “Water Sorption and Hydrolytic Stability of Polycarbonates,”
Polym. Eng. Sci.
,
29
(
24
), pp.
1733
1737
.
50.
Staliulionis
,
Z.
,
Jabbari
,
M.
, and
Hattel
,
J. H.
,
2016
, “
Mathematical Modelling of Coupled Heat and Mass Transport Into an Electronic Enclosure
,”
22nd International Workshop on Thermal Investigation of ICs and Systems
(
THERMINIC
), Budapest, Hungary, Sept. 21–23, pp. 323–326.
51.
Staliulionis
,
Z.
,
Joshy
,
S.
,
Jabbari
,
M.
,
Mohanty
,
S.
,
Ambat
,
R.
, and
Hattel
,
J. H.
,
2016
, “
Analysis of Moisture Transport Between Connected Enclosures Under a Forced Thermal Gradient
,”
18th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Nov. 30–Dec. 3, pp. 320–324.
52.
Yoon
,
S.
,
Han
,
B.
, and
Wang
,
Z.
,
2007
, “
On Moisture Diffusion Modeling Using Thermal-Moisture Analogy
,”
ASME J. Electron. Packag.
,
129
(
4
), pp.
421
426
.
53.
Jang
,
C.
,
Park
,
S.
,
Han
,
B.
, and
Yoon
,
S.
,
2008
, “
Advanced Thermal-Moisture Analogy Scheme for Anisothermal Moisture Diffusion Problem
,”
ASME J. Electron. Packag.
,
130
(
1
), pp.
749
755
.
54.
Staliulionis
,
Z.
,
Jabbari
,
M.
, and
Hattel
,
J. H.
,
2016
, “
Moisture Ingress Into Electronics Enclosure Under Isothermal Conditions
,”
AIP Conf. Proc.
,
1738
, p.
030041
.
You do not currently have access to this content.