The present paper proposes a proof of concept of a completely passive thermosyphon for cooling of power electronics. This thermosyphon is composed of an evaporator to cool down a four-heater pseudo-transistor module and a natural air-cooled condenser to reject the heat into the environment. R1234ze, R1234yf, and R134a are used as the working fluids with charges of 524, 517, and 566 g, respectively, for the low charge tests, and 720, 695, and 715 g for the high charge tests. It has been demonstrated that the refrigerant R1234ze with a low charge is not a good solution for the cooling system proposed here since low evaporator performance and fluid instability have been detected at moderate heat fluxes. In fact, R1234ze needed a larger charge of refrigerant to be safely used, reaching a transistor temperature of 53°C at a heat load of 65W. R1234yf and R134a, on the other hand, showed good results for both the low and the high charge cases. The maximum temperatures measured, respectively, were 52°C and 48°C at 65W for the low charge case and 55°C and 47°C at 62W for the high charge case. The corresponding values of overall thermal resistances of the thermosyphon for the working fluids R1234yf and R134a at the maximum heat load are very similar, being in the range of 0.440.46K/W.

References

References
1.
Chan
,
C.
,
Siqueiros
,
E.
,
Ling-Chin
,
J.
,
Royapoor
,
M.
, and
Roskilly
,
A.
,
2015
, “
Heat Utilisation Technologies: A Critical Review of Heat Pipes
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
615
627
.
2.
Shabgard
,
H.
,
Allen
,
M.
,
Sharifi
,
N.
,
Benn
,
S.
,
Faghri
,
A.
, and
Bergman
,
T.
,
2015
, “
Heat Pipe Heat Exchangers and Heat Sinks: Opportunities, Challenges, Applications, Analysis, and State of the Art
,”
Int. J. Heat Mass Transfer
,
89
, pp.
138
158
.
3.
Jafari
,
D.
,
Franco
,
A.
,
Filippeschi
,
S.
, and
Di Marco
,
P.
,
2016
, “
Two-Phase Closed Thermosyphons: A Review of Studies and Solar Applications
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
575
593
.
4.
Palm
,
B.
, and
Khodabandeh
,
R.
,
2003
, “
Choosing Working Fluid for Two-Phase Thermosyphon Systems for Cooling of Electronics
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
276
281
.
5.
Khodabandeh
,
R.
,
2005
, “
Pressure Drop in Riser and Evaporator in an Advanced Two-Phase Thermosyphon Loop
,”
Int. J. Refrig.
,
28
(
5
), pp.
725
734
.
6.
Samba
,
A.
,
Louahlia-Gualous
,
H.
,
Le Masson
,
S.
, and
Nrterhuser
,
D.
,
2013
, “
Two-Phase Thermosyphon Loop for Cooling Outdoor Telecommunication Equipments
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1351
1360
.
7.
Zimmermann
,
A. J.
, and
Melo
,
C.
,
2014
, “
Two-Phase Loop Thermosyphon Using Carbon Dioxide Applied to the Cold End of a Stirling Cooler
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
549
558
.
8.
Agostini
,
F.
,
Gradinger
,
T.
, and
Cottet
,
D.
,
2014
, “
Compact Gravity Driven and Capillary-Sized Thermosyphon Loop for Power Electronics Cooling
,”
J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031003
.
9.
Chehade
,
A.
,
Louahlia-Gualous
,
H.
,
Le Masson
,
S.
,
Victor
,
I.
, and
Abouzahab-Damaj
,
N.
,
2014
, “
Experimental Investigation of Thermosyphon Loop Thermal Performance
,”
Energy Convers. Manage.
,
84
, pp.
671
680
.
10.
Liu
,
Q.
,
Fukuda
,
K.
, and
Sutopo
,
P.
,
2014
, “
Experimental Study on Thermosyphon for Shipboard High-Power Electronics Cooling System
,”
Heat Transfer Eng.
,
35
(
11–12
), pp.
1077
1083
.
11.
Chehade
,
A.
,
Louahlia-Gualous
,
H.
,
Le Masson
,
S.
, and
Lpinasse
,
E.
,
2015
, “
Experimental Investigations and Modeling of a Loop Thermosyphon for Cooling With Zero Electrical Consumption
,”
Appl. Therm. Eng.
,
87
, pp.
559
573
.
12.
Tong
,
Z.
,
Liu
,
X.-H.
,
Li
,
Z.
, and
Jiang
,
Y.
,
2016
, “
Experimental Study on the Effect of Fill Ratio on an r744 Two-Phase Thermosyphon Loop
,”
Appl. Therm. Eng.
,
99
, pp.
302
312
.
13.
Li
,
J.
,
Tian
,
W.
, and
Lv
,
L.
,
2016
, “
A Thermosyphon Heat Pipe Cooler for High Power Leds Cooling
,”
Heat Mass Transfer
,
52
(
8
), pp.
1541
1548
.
14.
Oliveira
,
J.
,
Tecchio
,
C.
,
Paiva
,
K.
,
Mantelli
,
M.
,
Gandolfi
,
R.
, and
Ribeiro
,
L.
,
2015
, “
Passive Aircraft Cooling Systems for Variable Thermal Conditions
,”
Appl. Therm. Eng.
,
79
, pp.
88
97
.
15.
Oliveira
,
J.
,
Tecchio
,
C.
,
Paiva
,
K.
,
Mantelli
,
M.
,
Gandolfi
,
R.
, and
Ribeiro
,
L.
,
2016
, “
In-Flight Testing of Loop Thermosyphons for Aircraft Cooling
,”
Appl. Therm. Eng.
,
98
, pp.
144
156
.
16.
Ong
,
C. L.
,
Lamaison
,
N.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2016
, “
Two-Phase Mini-Thermosyphon Electronics Cooling—Part 1: Experimental Investigation
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
574
581
.
17.
Marcinichen
,
J. B.
,
Lamaison
,
N.
,
Ong
,
C. L.
, and
Thome
,
J. R.
,
2016
, “
Two-Phase Mini-Thermosyphon Electronics Cooling—Part 2: Model and Steady-State Validations
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
582
588
.
18.
Lamaison
,
N.
,
Marcinichen
,
J. B.
,
Ong
,
C. L.
, and
Thome
,
J. R.
,
2016
, “
Two-Phase Mini-Thermosyphon Electronics Cooling—Part 3: Transient Modeling and Experimental Validation
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
589
598
.
19.
Lamaison
,
N.
,
Marcinichen
,
J. B.
,
Ong
,
C. L.
, and
Thome
,
J. R.
,
2016
, “
Two-Phase Mini-Thermosyphon Electronics Cooling—Part 4: Application to 2U Servers
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
599
609
.
20.
Smith
,
K.
,
Siedel
,
S.
,
Robinson
,
A.
, and
Kempers
,
R.
,
2015
, “
The Effects of Bend Angle and Fill Ratio on the Performance of a Naturally Aspirated Thermosyphon
,”
Appl. Therm. Eng.
,
101
, pp.
455
467
.
21.
Chen
,
S.
, and
Yang
,
J.
,
2016
, “
Loop Thermosyphon Performance Study for Solar Cells Cooling
,”
Energy Convers. Manage.
,
121
, pp.
297
304
.
22.
Lamaison
,
N.
,
Ong
,
C.
,
Marcinichen
,
J.
, and
Thome
,
J.
,
2017
, “
Two-Phase Mini-Thermosyphon Electronics Cooling: Dynamic Modeling, Experimental Validation and Application to 2U Servers
,”
Appl. Therm. Eng.
,
110
, pp.
481
494
.
23.
Garrity
,
P.
,
Klausner
,
J.
, and
Mei
,
R.
,
2009
, “
Instability Phenomena in a Two-Phase Microchannel Thermosyphon
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1701
1708
.
24.
Khodabandeh
,
R.
, and
Furberg
,
R.
,
2010
, “
Instability, Heat Transfer and Flow Regime in a Two-Phase Flow Thermosyphon Loop at Different Diameter Evaporator Channel
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1107
1114
.
25.
Cataldo
,
F.
, and
Thome
,
J. R.
,
2017
, “
Experimental Evaluation of the Thermal Performances of a Thermosyphon Cooling System Rejecting Heat by Natural and Forced Convection
,”
Appl. Therm. Eng.
,
127
, pp.
1404
1415
.
26.
Xia
,
G.
,
Jiang
,
J.
,
Wang
,
J.
,
Zhai
,
Y.
, and
Ma
,
D.
,
2015
, “
Effects of Different Geometric Structures on Fluid Flow and Heat Transfer Performance in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
80
, pp.
439
447
.
27.
Manikanda Kumaran
,
R.
,
Kumaraguruparan
,
G.
, and
Sornakumar
,
T.
,
2013
, “
Experimental and Numerical Studies of Header Design and Inlet/Outlet Configurations on Flow Mal-Distribution in Parallel Micro-Channels
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
205
216
.
28.
Park
,
J.
,
Thome
,
J.
, and
Michel
,
B.
,
2009
, “
Effect of Inlet Orifice on Saturated CHF and Flow Visualization in Multi-Microchannel Heat Sinks
,”
25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
1
8
.
29.
Lee
,
J.
, and
Mudawar
,
I.
,
2008
, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat Sinks—Part 1: Experimental Methods and Flow Visualization Results
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4315
4326
.
30.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Heat Transfer in Condensing and Boiling Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
627
652
.
31.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2015
, “
Review of Two-Phase Critical Flow Models and Investigation of the Relationship Between Choking, Premature CHF, and CHF in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
87
, pp.
497
511
.
32.
Szczukiewicz
,
S.
,
Magnini
,
M.
, and
Thome
,
J.
,
2014
, “
Proposed Models, Ongoing Experiments, and Latest Numerical Simulations of Microchannel Two-Phase Flow Boiling
,”
Int. J. Multiphase Flow
,
59
, pp.
84
101
.
You do not currently have access to this content.