The ripening growth kinetics of interfacial Cu6Sn5 grains between Cu substrates and Sn-3.0Ag-0.5Cu-xTiO2 (x = 0, 0.02, 0.05, 0.1, 0.3, and 0.6 wt %) (SAC305-xTiO2) solders were investigated. The results show that the Cu6Sn5 grain morphology is affected by the solder composition and the reflow time. The Cu6Sn5 grain size decreases upon addition of TiO2 and shows a significant decrease when the TiO2 nanoparticle fraction is increased to 0.1 wt %. At higher TiO2 nanoparticle fractions, the Cu6Sn5 grain size increases slightly. The growth of the Cu6Sn5 grains is mainly supplied by the flux of the interfacial reaction and the flux of ripening; the ripening flux plays a dominant role because it is approximately one order of magnitude greater than the interfacial reaction flux. The ripening growth of the Cu6Sn5 grains in the TiO2-containing solder joints is reduced more effectively than that of the Cu6Sn5 grains in the TiO2-free joint. For the SAC305/Cu and SAC305-0.6TiO2/Cu solder joints, the particle size distribution (PSD) of the Cu6Sn5 grains is well fit with the Marqusee and Ross (MR) model when the normalized size value of r/<r> is less than 1, and it is consistent with the flux-driven ripening (FDR) model when the value of r/<r> is greater than 1. On the other hand, for the SAC305-0.1TiO2/Cu solder joint, the Cu6Sn5 grains with a nearly hemispheric scallop shape and the PSD of the Cu6Sn5 grains show good agreement with the FDR model.

References

References
1.
Kotadia
,
H. R.
,
Howes
,
P. D.
, and
Mannan
,
S. H.
,
2014
, “
A Review: On the Development of Low Melting Temperature Pb-Free Solders
,”
Microelectron. Reliab.
,
54
(
6–7
), pp.
1253
1273
.
2.
Zhu
,
Z.
,
Sun
,
H.
,
Wu
,
F.
, and
Chan
,
Y. C.
,
2016
, “
Comparative Study of the Microstructure and Mechanical Strength of Tin-Copper (Sn0.7Cu) Solder Modified With Silver (Ag) by Both Alloying and Doping Methods
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
7
), pp.
6835
6844
.
3.
Yang
,
L.
,
Dai
,
J.
,
Zhang
,
Y.
,
Jing
,
Y.
,
Ge
,
J.
, and
Liu
,
H.
,
2015
, “
Influence of BaTiO3 Nanoparticle Addition on Microstructure and Mechanical Properties of Sn-58Bi Solder
,”
J. Electron. Mater.
,
44
(
7
), pp.
2473
2478
.
4.
Khodabakhshi
,
F.
,
Sayyadi
,
R.
, and
Javid
,
N. S.
,
2017
, “
Lead-Free Sn-Ag-Cu Reinforced by Ni-Coated Grapheme Nanosheets Prepared by Mechanical Alloying: Microstructural Evolution and Mechanical Durability
,”
Mater. Sci. Eng. A
,
702
, pp.
371
385
.
5.
Belyakov
,
S. A.
,
Xian
,
J. W.
,
Sweatman
,
K.
,
Nishimura
,
T.
,
Akaiwa
,
T.
, and
Gourlay
,
C. M.
,
2017
, “
Influence of Bismuth on the Solidification of Sn-0.7Cu-0.05Ni-xBi/Cu Joints
,”
J. Alloys Compd.
,
701
, pp.
321
334
.
6.
El-Daly
,
A. A.
,
Hammad
,
A. E.
,
Fawzy
,
A.
, and
Nasrallh
,
D. A.
,
2013
, “
Microstructure, Mechanical Properties and Deformation Behavior of Sn-1.0Ag-0.5Cu after Ni and Sb Additions
,”
Mater. Des.
,
43
, pp.
40
49
.
7.
Tang
,
Y.
,
Li
,
G. Y.
, and
Pan
,
Y. C.
,
2013
, “
Influence of TiO2 Nanoparticles on IMC Growth in Sn-3.0Ag-0.5Cu-xTiO2 Solder Joints in Reflow Process
,”
J. Alloys Compd.
,
554
, pp.
195
203
.
8.
Tang
,
Y.
,
Li
,
G. Y.
,
Luo
,
S. M.
,
Wang
,
K. Q.
, and
Zhou
,
B.
,
2015
, “
Diffusion Wave Model and Growth Kinetics of Interfacial Intermetallic Compounds in Sn-3.0Ag-0.5Cu-xTiO2 Solder Joints
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
5
), pp.
3196
3205
.
9.
Tu
,
K. N.
,
Lee
,
T. Y.
,
Jang
,
J. W.
,
Li
,
L.
,
Frear
,
D. R.
,
Zeng
,
K.
, and
Kivilahti
,
J. K.
,
2001
, “
Wetting Reaction Versus Solid State Aging of Eutectic SnPb on Cu
,”
J. Appl. Phys.
,
89
(
9
), pp.
4843
4849
.
10.
Tu
,
K. N.
,
Gusak
,
A. M.
, and
Li
,
M.
,
2003
, “
Physics and Materials Challenges for Lead-Free Solders
,”
J. Appl. Phys.
,
93
(
3
), pp.
1335
1353
.
11.
Kim
,
H. K.
, and
Tu
,
K. N.
,
1995
, “
Rate of Consumption of Cu in Soldering Accompanied by Ripening
,”
Appl. Phys. Lett.
,
67
(
14
), pp.
2002
2004
.
12.
Kim
,
H. K.
, and
Tu
,
K. N.
,
1996
, “
Kinetic Analysis of the Soldering Reaction Between Eutectic SnPb Alloy and Cu Accompanied by Ripening
,”
Phys. Rev. B
,
53
(
23
), pp.
16027
16034
.
13.
Suh
,
J. O.
,
Tu
,
K. N.
,
Lutsenko
,
G. V.
, and
Gusak
,
A. M.
,
2008
, “
Size Distribution and Morphology of Cu6Sn5 Scallops in Wetting Reacting Between Molten Solder and Copper
,”
Acta Mater.
,
56
(
5
), pp.
1075
1083
.
14.
Suh
,
J. O.
,
Tu
,
K. N.
, and
Tamura
,
N.
,
2007
, “
Preferred Orientation Relationship Between Cu6Sn5 Scallop-Type Grains and Cu Substrate in Reactions Between Molten Sn-Based Solders and Cu
,”
J. Appl. Phys.
,
102
(
6
), p.
063511
.
15.
Cho
,
M. G.
,
Park
,
Y. S.
,
Seo
,
S. K.
,
Paik
,
K. W.
, and
Lee
,
H. M.
,
2011
, “
Effect of Ag Addition on the Ripening Growth of Cu6Sn5 Grains at the Interface of Sn-xAg-0.5Cu/Cu During a Reflow
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
1
(
12
), pp.
1939
1946
.
16.
Yang
,
L. M.
, and
Zhang
,
Z. F.
,
2013
, “
Effect of Y2O3 Nanoparticles on Growth Behaviors of Cu6Sn5 Grains in Soldering Reaction
,”
J. Electron. Mater.
,
42
(
12
), pp.
3552
3558
.
17.
Zou
,
H. F.
,
Yang
,
H. J.
, and
Zhang
,
Z. F.
,
2011
, “
Coarsening Mechanisms, Texture Evolution and Size Distribution of Cu6Sn5 Between Cu and Sn-Based Solders
,”
Mater. Chem. Phys.
,
131
(
1–2
), pp.
190
198
.
18.
Zou
,
H. F.
,
Yang
,
H. J.
, and
Zhang
,
Z. F.
,
2008
, “
Morphologies, Orientation Relationships and Evolution of Cu6Sn5 Grains Formed Between Molten Sn and Cu Single Crystals
,”
Acta Mater.
,
56
(
11
), pp.
2649
2662
.
19.
Tsao
,
L. C.
,
Wu
,
M. W.
, and
Chang
,
S. Y.
,
2012
, “
Effect of TiO2 Nanoparticles on the Microstructure and Bonding Strengths of Sn0.7Cu Composite Solder BGA Packages With Immersion Sn Surface Finish
,”
J. Mater. Sci.: Mater. Electron.
,
23
(
3
), pp.
681
687
.
20.
Chen
,
B. L.
, and
Li
,
G. Y.
,
2004
, “
Influence of Sb on IMC Growth in Sn-Ag-Cu-Sb Pb-Free Solder Joints in Reflow Process
,”
Thin Solid Films
,
462–463
, pp.
395
401
.
21.
Hu
,
X.
, and
Ke
,
Z.
,
2014
, “
Growth Behavior of Interfacial Cu-Sn Intermetallic Compounds of Sn/Cu Reaction Couples During Dip Soldering and Aging
,”
J. Mater. Sci.: Mater. Electron.
,
25
(
2
), pp.
936
945
.
22.
Yao
,
J. H.
,
Elder
,
K. R.
,
Guo
,
H.
, and
Grant
,
M.
,
1992
, “
Ostwald Ripening in Two and Three Dimensions
,”
Phys. Rev. B
,
45
(
14
), pp.
8173
8176
.
23.
Li
,
Z. L.
,
Li
,
G. Y.
,
Li
,
B.
,
Chen
,
L. X.
,
Huang
,
J. H.
, and
Tang
,
Y.
,
2016
, “
Size Effect on IMC Growth in Micro-Scale Sn-3.0Ag-0.5Cu-0.1TiO2 Solder Joints in Reflow Process
,”
J. Alloys Compd.
,
685
, pp.
983
991
.
24.
Wang
,
S. J.
, and
Liu
,
C. Y.
,
2007
, “
Coupling Effect in Pt/Sn/Cu Sandwich Solder Joint Structures
,”
Acta Mater.
,
55
(
10
), pp.
3327
3335
.
25.
Tang
,
Y.
,
Pan
,
Y. C.
, and
Li
,
G. Y.
,
2013
, “
Influence of TiO2 Nanoparticles on Thermal Property, Wettability and Interfacial Reaction in Sn-3.0Ag-0.5Cu-xTiO2 Composite Solder
,”
J. Mater. Sci.: Mater. Electron.
,
24
(
5
), pp.
1587
1594
.
26.
Tang
,
Y.
,
Li
,
G. Y.
,
Chen
,
D. Q.
, and
Pan
,
Y. C.
,
2014
, “
Influence of TiO2 Nanoparticles on IMC Growth in Sn-3.0Ag-0.5Cu-xTiO2 Solder Joints During Isothermal Aging Process
,”
J. Mater. Sci.: Mater. Electron.
,
25
(
2
), pp.
981
991
.
27.
Ratke
,
L.
, and
Voorhees
,
P. W.
,
2002
,
Growth and Coarsening: Ostwald Ripening in Material Processing
,
Springer
, Berlin.
28.
Gusak
,
A. M.
, and
Tu
,
K. N.
,
2002
, “
Kinetic Theory of Flux-Driven Ripening
,”
Phys. Rev. B
,
66
(
11
), p.
115403
.
You do not currently have access to this content.