Large thermal gradients represent major operational hazards in microprocessors; hence, there is a critical need to monitor possible hot spots both accurately and in real time. Thermal monitoring in microprocessors is typically performed using temperature sensors embedded in the electronic board. The location of the temperature sensors is primarily determined by the sensor space claim rather than the ideal location for thermal management. This paper presents an optimization methodology to determine the most beneficial locations for the temperature sensors inside of the microprocessors, based on input from high-resolution surface infrared thermography combined with inverse heat transfer solvers to predict hot spot locations. Specifically, the infrared image is used to obtain the temperature map over the processor surface, and subsequently delivers the input to a three-dimensional (3D) inverse heat conduction methodology, used to determine the temperature field within the processor. In this paper, simulated thermal maps are utilized to assess the accuracy of this method. The inverse methodology is based on a function specification method combined with a sequential regularization in order to increase accuracy in the results. Together with the number of sensors, the temperature field within the processor is then used to determine the optimal location of the temperature sensors using a genetic algorithm optimization combined with a Kriging interpolation. This combination of methodologies was validated against the finite element analysis of a chip incorporating heaters and temperature sensors. An uncertainty analysis of the inverse methodology and the Kriging interpolation was performed separately to assess the reliability of the procedure.

References

References
1.
Arabi
,
K.
, and
Bozena
,
K.
,
1997
, “
Built-In Temperature Sensors for On-Line Thermal Monitoring of Microelectronic Structures
,” IEEE International Conference on Computer Design: VLSI in Computers and Processors (
ICCD
), Austin, TX, Oct. 12–15, pp. 462–467.
2.
Huang
,
Y.
,
Shen
,
X.
,
Li
,
J.
,
Li
,
B.
,
Duan
,
R.
,
Lin
,
C.-H.
,
Liu
,
J.
, and
Chen
,
Q.
,
2015
, “
A Method to Optimize Sampling Locations for Measuring Indoor Air Distributions
,”
Atmos. Environ.
,
102
, pp.
355
365
.
3.
Brooks
,
D.
, and
Margaret
,
M.
,
2001
, “
Dynamic Thermal Management for High-Performance Microprocessors
,” The Seventh International Symposium on High-Performance Computer Architecture (
HPCA
), Monterrey, Mexico, Jan. 19–24, pp. 171–182.
4.
Skadron
,
K.
,
Tarek
,
A.
, and
Stan
,
M. R.
,
2002
, “
Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management
,”
IEEE
Eighth International Symposium on High-Performance Computer Architecture, Cambridge, MA, Feb. 2–6, pp. 17–28.
5.
Coskun
,
A. K.
,
Ayala
,
J. L.
,
Atienza
,
D.
,
Rosing
,
T. S.
, and
Leblebici
,
Y.
,
2009
, “
Dynamic Thermal Management in 3D Multicore Architectures
,” Design, Automation and Test in Europe Conference Exhibition (
DATE
), Nice, France, Apr. 20–24, pp. 1410–1415.
6.
Ranjan
,
R.
,
Matthew R
,
P.
, and
Shashank
,
K.
,
2016
, “
Thermoelectric Package Design for High Ambient Temperature Electronics Cooling
,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 31–June 3, pp. 857–861.
7.
Choi
,
J.
,
Kim
,
Y.
,
Sivasubramaniam
,
A.
,
Srebric
,
J.
,
Wang
,
Q.
, and
Lee
,
J.
,
2007
, “
Modeling and Managing Thermal Profiles of Rack-Mounted Servers With Thermostat
,” IEEE 13th International Symposium on High Performance Computer Architecture (
HPCA
), Scottsdale, AZ, Feb. 10–14, pp. 205–215.
8.
Stanley
,
T. J.
, and
Mudge, T.
,
1995
, “
A Parallel Genetic Algorithm for Multiobjective Microprocessor Design
,” International Conference on Genetic Algorithms (
ICGA
), Pittsburgh, PA, July 15–19, pp. 597–604.
9.
Breen
,
T. J.
,
Walsh
,
Ed. J.
,
Punch
,
J.
,
Shah
,
A. J.
, and
Bash
,
C. E.
,
2010
, “
From Chip to Cooling Tower Data Center Modeling: Part I Influence of Server Inlet Temperature and Temperature Rise Across Cabinet
,” 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, June 2–5, pp. 1–10.
10.
Walsh
,
Ed. J.
,
Breen
,
T. J.
,
Punch
,
J.
,
Shah
,
A. J.
, and
Bash
,
C. E.
,
2010
, “
From Chip to Cooling Tower Data Center Modeling: Part II Influence of Chip Temperature Control Philosophy
,” 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, June 2–5, pp. 1–7.
11.
Patel
,
C. D.
,
Sharma
,
R.
,
Bash
,
C. E.
, and
Beitelmal
,
A.
, 2002, “
Thermal Considerations in Cooling Large Scale High Compute Density Data Centers
,” The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITHERM
), San Diego, CA, May 30–June 1, pp. 767–776.
12.
Sharma
,
R. K.
,
Bash
,
C. E.
,
Patel
,
C. D.
,
Friedrich
,
R. J.
, and
Chase
,
J. S.
,
2005
, “
Balance of Power: Dynamic Thermal Management for Internet Data Centers
,”
IEEE Internet Comput.
,
9
(
1
), pp.
42
49
.
13.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
14.
Alifanov
,
O. M.
,
1994
,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
New York
.
15.
Colaço
,
M. J.
,
Orlande
,
H. R. B.
, and
Dulikravich
,
G. S.
,
2006
, “
Inverse and Optimization Problems in Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
1
), pp.
1
24
.
16.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
,
1991
, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2911
919
.
17.
Sousa
,
J. F. L.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Villafañe
,
L.
,
2012
, “
Three-Dimensional (3D) Inverse Heat Flux Evaluation Based on Infrared Thermography
,”
Quant. InfraRed Thermogr. J.
,
9
(
2
), pp.
177
191
.
18.
Sousa, J.
,
Villafañe, L.
, and
Paniagua, G.
, 2014, “
Thermal Analysis and Modeling of Surface Heat Exchangers Operating in the Transonic Regime
,”
Energy
,
64
, pp. 961–969.
19.
Huang
,
C.-H.
, and
Wang
,
S.-P.
,
1999
, “
A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method
,”
Int. J. Heat Mass Transfer
,
42
(
18
), pp.
3387
3403
.
20.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2015
, “
Real Time Solution for Inverse Heat Conduction Problems in a Two-Dimensional Plate With Multiple Heat Fluxes at the Surface
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1148
1156
.
21.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
, April
2015
, “
A Filter Based Solution for Inverse Heat Conduction Problems in Multi-Layer Mediums
,”
Int. J. Heat Mass Transfer
,
83
, pp.
710
720
.
22.
Fernandes
,
A. P.
,
dos Santos
,
M. B.
, and
Guimarães
,
G.
,
2015
, “
An Analytical Transfer Function Method to Solve Inverse Heat Conduction Problems
,”
Appl. Math. Modell.
,
39
(
22
), pp.
6897
6914
.
23.
Kleijnen
,
J. P. C.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.
24.
Jalali
,
H.
,
Van Nieuwenhuyse
,
I.
, and
Picheny
,
V.
,
2017
, “
Comparison of Kriging-Based Algorithms for Simulation Optimization With Heterogeneous Noise
,”
Eur. J. Oper. Res.
,
261
(
1
), pp.
279
301
.
25.
Clark
,
I.
,
1977
, “
Practical Kriging in Three Dimensions
,”
Comput. Geosci.
,
3
(
1
), pp.
173
180
.
26.
Venturelli
,
G.
,
Ernesto
,
B.
, and
Łukasz
,
Ł.-W.
,
2017
, “
A Kriging-Assisted Multiobjective Evolutionary Algorithm
,”
Appl. Soft Comput.
,
58
, pp. 155–175.
27.
Khademi
,
G.
, and
Karimaghaee
,
P.
,
2016
, “
Hybrid FDG Optimization Method and Kriging Interpolator to Optimize Well Locations
,”
J. Pet. Explor. Prod. Technol.
,
6
(
2
), pp.
191
200
.
28.
Chiles
,
J.-P.
, and
Pierre
,
D.
,
2009
,
Geostatistics: Modeling Spatial Uncertainty
, Vol.
497
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.