Effect of airflow managements on the efficiency index of a small container data center having overhead air supply is reported in this study. Seventeen arrangements and configurations regarding the airflow and blockage arrangements are experimentally examined and compared. Test results indicate an appreciable hot air recirculation occurring for rack arrangement without any blockage, and the hot spot occurs at the second rack alongside the cold aisle. The hot spot had moved to the first rack when the blockage plate is installed on the rack top. Rack locations relative to air handler casts a negligible effect on the efficiency index, and it is comparatively more effective by sealing the trailing of the cold aisle. A smaller cold-aisle spacing helps to lower the temperature distribution, and an additional opening of the supplied vent will not help in removal of hot spot. Shutting off the grille in the center of cold aisle is also unable to fix the hot air recirculation and may even incur hot air reversal. The hot air reversal can be removed by adding additional blockage plate at the flow reversal section. Higher supplied air flow rate also improves the efficiency index considerably.

References

References
1.
Shehabi
,
A.
,
Smith, S.
,
Sartor, D.
,
Brown
,
R.
,
Herrlin
,
M.
,
Koomey
,
J.
,
Masanet, E.
,
Horner
,
N.
,
Azevedo
,
I.
, and
Lintner
,
W.
,
2016
, “United States Data Center Energy Usage Report,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No.
LBNL-1005775
.
2.
ASHRAE Technical Committee
,
2011
, “Thermal Guidelines for Data Processing Environments-Expanded Data Center Classes and Usage Guidance,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.
3.
Steinbrecher
,
R. A.
,
2011
, “
Data Center Environments ASHRAE's Evolving Thermal Guidelines
,”
ASHRAE J.
,
53
(
12
), pp. 42–49.
4.
Nada
,
S. A.
,
Elfeky
,
K. E.
, and
Attia
,
A. M. A.
,
2016
, “
Experimental Investigations of Air Conditioning Solutions in High Power Density Data Centers Using a Scaled Physical Model
,”
Int. J. Refrig.
,
63
, pp.
87
99
.
5.
Fakhim
,
B.
,
Nagarathinam
,
S.
,
Armfield
,
S. W.
, and
Behnia
,
M.
,
2017
, “
Thermal Management Issues in Operational Data Centers: Computational Fluid Dynamics Analysis and Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
3
), p.
031009
.
6.
Arghode
,
V. K.
,
Kang
,
T.
,
Joshi
,
Y.
,
Phelps
,
W.
, and
Michaels
,
M.
,
2017
, “
Measurement of Air Flow Rate Through Perforated Floor Tiles in a Raised Floor Data Center
,”
ASME J. Electron. Packag.
,
139
(
1
), p.
011007
.
7.
Rambo
,
J.
, and
Joshi
,
Y.
,
2006
, “
Convective Transport Processes in Data Centers
,”
Numer. Heat Transfer, Part A: Appl.
,
49
(
10
), pp.
923
945
.
8.
Wang
,
I. N.
,
Tsui
,
Y.-Y.
, and
Wang
,
C.-C.
,
2015
, “
Improvements of Airflow Distribution in a Container Data Center
,”
Energy Procedia
,
75
, pp.
1819
1824
.
9.
Schmidt
,
R. R.
, and
Iyengar
,
M.
,
2007
, “
Comparison Between Underfloor Supply and Overhead Supply Ventilation Designs for Data Center High-Density Clusters
,”
ASHRAE Trans.
,
113
(
1
), pp.
115
125
.
10.
Alkharabsheh
,
S.
,
Fernandes
,
J.
,
Gebrehiwot
,
B.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Ortega
,
A.
,
Joshi
,
Y.
, and
Sammakia
,
B.
,
2015
, “
A Brief Overview of Recent Developments in Thermal Management in Data Centers
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040801
.
11.
Kumar
,
P.
,
Sundaralingam
,
V.
, and
Joshi
,
Y.
,
2011
, “
Effect of Server Load Variation on Rack Air Flow Distribution in a Raised Floor Data Center
,” 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 20–24, pp.
90
96
.
12.
Kumar
,
P.
,
Sundaralingam
,
V.
,
Joshi
,
Y.
,
Patterson
,
M. K.
,
Steinbrecher
,
R.
, and
Mena
,
M.
,
2011
, “Effect of Supply Air Temperature on Rack Cooling in a High Density Raised Floor Data Center Facility,”
ASME
Paper No. IMECE2011-65574.
13.
Shrivastava
,
S.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2005
, “Comparative Analysis of Different Data Center Airflow Management Configurations,”
ASME
Paper No. IPACK2005-73234.
14.
VanGilder
,
J. W.
, and
Schmidt
,
R.
,
2005
, “Airflow Uniformity Through Perforated Tiles in a Raised-Floor Data Center,”
ASME
Paper No. IPACK2005-73375.
15.
Cho
,
J.
,
Lim
,
T.
, and
Kim
,
B. S.
,
2009
, “
Measurements and Predictions of the Air Distribution Systems in High Compute Density (Internet) Data Centers
,”
Energy Build.
,
41
(
10
), pp.
1107
1115
.
16.
Durand-Estebe
,
B.
,
Le Bot
,
C.
,
Mancos
,
J. N.
, and
Arquis
,
E.
,
2013
, “
Data Center Optimization Using PID Regulation in CFD Simulations
,”
Energy Build.
,
66
, pp.
154
164
.
17.
Arghode
,
V. K.
, and
Joshi
,
Y.
,
2016
, “
Modified Body Force Model for Air Flow Through Perforated Floor Tiles in Data Centers
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
031002
.
18.
Wang
,
C.-H.
,
Tsui
,
Y.-Y.
, and
Wang
,
C.-C.
,
2017
, “
On Cold-Aisle Containment of a Container Datacenter
,”
Appl. Therm. Eng.
,
112
, pp.
133
142
.
19.
Herrlin
,
M. K.
,
2005
, “
Rack Cooling Effectiveness in Data Centers and Telecom central Offices: The Rack Cooling Index (RCI)
,”
ASHRAE Trans.
,
111
(
2
), pp.
725
731
.
20.
Sharma
,
R. K.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2002
, “
Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-Scale Data Centers
,”
AIAA
Paper No. 2002-3091.
21.
Sharma
,
R.
, and
Bash
,
C.
,
2002
, “
Dimensionless Parameters for Energy-Efficient Data Center Design
,”
IMAPS Advanced Technology Workshop on Thermal Management (THERM ATW)
, Palo Alto, CA, June 19–21.
22.
Patankar
,
S. V.
,
2010
, “
Airflow and Cooling in a Data Center
,”
ASME J. Heat Transfer
,
132
(
7
), p.
073001
.
23.
Joshi
,
Y.
, and
Kumar
,
P.
,
2012
,
Energy Efficient Thermal Management of Data Centers
, Springer-Verlag, New York, pp. 39–94.
24.
Schmidt
,
R.
, and
Cruz
,
E.
,
2003
, “
Cluster High-Powered Racks Within a Raised-Floor Computer Data Center: Effect of Perforated Tile Flow Distribution on Rack Inlet Air Temperatures
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
510
518
.
25.
Ni
,
J.
,
Jin
,
B.
,
Zhang
,
B.
, and
Wang
,
X.
,
2017
, “
Simulation of Thermal Distribution and Airflow for Efficient Energy Consumption in a Small Data Centers
,”
Sustainability
,
9
(
4
), p.
664
.
You do not currently have access to this content.