In this work, a novel ball grid array (BGA) interconnection process has been developed using solderable polymer–solder composites (SPCs) with low-melting-point alloy (LMPA) fillers to enhance the processability of the conventional capillary underfill technique and to overcome the limitations of the no-flow underfill technique. To confirm the feasibility of the proposed technique, a BGA interconnection test was performed using four types of SPCs with a different LMPA concentration (from 0 to 5 vol %). After the BGA interconnection process, the interconnection characteristics, such as morphology of conduction path and electrical properties of the BGA assemblies, were inspected and compared. The results indicated that BGA assemblies using SPC without LMPA fillers showed weak conduction path formation, including open circuit (solder bump loss) or short circuit formation because of the expansion of air voids within the interconnection area due to the relatively high reflow peak temperature. Meanwhile, assemblies using SPC with 3 vol % LMPAs showed stable metallurgical interconnection formation and electrical resistance due to the relatively low-reflow peak temperature and favorable selective wetting behavior of molten LMPAs for the solder bumps and Cu metallizations.

References

References
1.
Qi
,
F.
,
Ding
,
Y.
,
Zhanlai
,
D.
, and
Fu
,
H.
,
2005
, “
Reliability of Ball Grid Array (BGA) Assembly With Reworkable Capillary Underfill Material
,”
Sixth International Conference on Electronic Packaging Technology
, Shenzhen, China, Aug. 31–Sept. 2, pp.
1
7
.
2.
Wang
,
L.
,
Kang
,
S. C.
,
Li
,
H.
,
Baldwin
,
D. F.
, and
Wong
,
C. P.
,
2001
, “
Evaluation of Reworkable Underfils for Area Array Packaging Encapsulation
,”
International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces
, Chateau Elan, Braselton, GA, Mar. 11–14, pp.
29
36.
3.
Swaminathan
,
S.
,
Sikka
,
K. K.
,
Indyk
,
R. F.
, and
Sinha
,
T.
,
2016
, “
Measurement of Underfill Interfacial and Bulk Fracture Toughness in Flip-Chip Packages
,”
Microelectron. Reliab.
,
66
, pp.
161
172
.
4.
Kuo
,
C. T.
,
Yip
,
M. C.
, and
Chiang
,
K. N.
,
2004
, “
Time and Temperature-Dependent Mechanical Behavior of Underfill Materials in Electronic Packaging Application
,”
Microelectron. Reliab.
,
44
(
4
), pp.
627
638
.
5.
Zhang
,
Z.
, and
Wong
,
C. P.
,
2004
, “
Recent Advances in Flip-Chip Underfill: Materials, Process, and Reliability
,”
IEEE Trans. Adv. Packag.
,
27
(
3
), pp.
515
524
.
6.
Kim
,
Y. B.
, and
Sung
,
J.
,
2012
, “
Capillary-Driven Micro Flows for the Underfill Process in Microelectronics Packaging
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3751
3759
.
7.
Wu
,
Z.
,
Cai
,
J.
,
Chen
,
Y.
, and
Li
,
J.
,
2017
, “
Drop Performance Evaluation for Application of Different Underfill Processes
,”
18th International Conference on Electronic Packaging Technology
, Harbin, China, Aug. 16–19, pp.
1676
1681
.
8.
Pennisi
,
R. W.
, and
Papageorge
,
M. V.
,
1992
, “
Adhesive and Encapsulant Material With Fluxing Properties
,” Motorola, Inc., Chicago, IL, U.S. Patent No.
5128746
.
9.
Wong
,
C. P.
,
Shi
,
S. H.
, and
Jefferson
,
G.
,
1998
, “
High Performance No-Flow Underfills for Low-Cost Flip-Chip Applications: Material Characterization
,”
IEEE Trans. Compon., Packag., Manuf. Technol. A
,
21
(
3
), pp.
450
458
.
10.
Zhang
,
Z.
, and
Wong
,
C. P.
,
2003
, “
Double-Layer No-Flow Underfill Materials and Process
,”
IEEE Trans. Adv. Packag.
,
26
(
2
), pp.
199
205
.
11.
Mostofizadeh
,
M.
,
Najari
,
M.
,
Das
,
D.
,
Pecht
,
M.
, and
Frisk
,
L.
,
2016
, “
Effect of Epoxy Flux Underfill on Thermal Cycling Reliability of Sn–8Zn3Bi Lead-Free Solder in a Sensor Application
,”
IEEE 66th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 31–June 3, pp.
2169
2175
.
12.
Kolbeck
,
A.
,
Hauck
,
T.
,
Jendrny
,
J.
,
Hahn
,
O.
, and
Lang
,
S.
,
2003
, “
No-Flow Underfill Process for Flip-Chip Assembly
,”
14th European Microelectronics and Packaging Conference and Exhibition
, Friedrichshafen, Germany, June 23–25, pp.
1
5
.
13.
Chan
,
Y. C.
,
Tu
,
P. L.
, and
Hung
,
K. C.
,
2001
, “
Study of the Self-Alignment of No-Flow Underfill for Micro-BGA Assembly
,”
Microelectron. Reliab.
,
41
(
11
), pp.
1867
1875
.
14.
Lee
,
S.
, and
Baldwin
,
D. F.
,
2013
, “
Heterogeneous Void Nucleation Study in Flip Chip Assembly Process Using No-Flow Underfill
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011005
.
15.
Lee
,
J. I.
,
Yim
,
B. S.
,
Yun
,
M. S.
, and
Kim
,
J. M.
,
2016
, “
Through-Hole Filling Characteristics of Solderable Polymer Composites With Low Melting Point Alloy Fillers
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
1
), pp.
982
991
.
16.
Yim
,
B. S.
, and
Kim
,
J. M.
,
2016
, “
Thermo-Mechanical Reliability of a Multi-Walled Carbon Nanotube-Incorporated Solderable Isotropic Conductive Adhesive
,”
Microelectron. Reliab.
,
57
, pp.
93
100
.
17.
Lee
,
J. I.
,
Yim
,
B. S.
,
Shin
,
D.
, and
Kim
,
J. M.
,
2016
, “
Three-Dimensional Multi-Layer Through-Hole Filling Properties of Solderable Polymer Composites With Low-Melting-Point Alloy Fillers
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
6
), pp.
6223
6231
.
18.
Zeng
,
K.
,
Stierman
,
R.
,
Chiu
,
T. C.
,
Edwards
,
D.
,
Ano
,
K.
, and
Tu
,
K. N.
,
2005
, “
Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability
,”
J. Appl. Phys.
,
97
(2), p.
024508
.
19.
Onishi
,
M.
, and
Fujibuchi
,
H.
,
1975
, “
Reaction-Diffusion in the Cu-Sn System
,”
Trans. JIM
,
16
(9), pp.
539
547
.
20.
Satyanarayan
,
S.
, and
Prabhu
,
K. N.
,
2011
, “
Reactive Wetting, Evolution of Interfacial and Bulk IMCs and Their Effect on Mechanical Properties of Eutectic Sn–Cu Solder Alloy
,”
Adv. Colloid Interface Sci.
,
166
(
1–2
), pp.
87
118
.
You do not currently have access to this content.