A method to determine the critical energy release rate of a peel tested sample using an energy-based approach within a finite element framework is developed. The method uses a single finite element model, in which the external work, elastic strain energy, and inelastic strain energy are calculated as nodes along the crack interface are sequentially decoupled. The energy release rate is calculated from the conservation of energy. By using a direct, energy-based approach, the method can account for large plastic strains and unloading, both of which are common in peel tests. The energy rates are found to be mesh dependent; mesh and convergence strategies are developed to determine the critical energy release rate. An example of the model is given in which the critical energy release rate of a 10-μm thick electroplated copper thin film bonded to a borosilicate glass substrate which exhibited a 3.0 N/cm average peel force was determined to be 20.9 J/m2.

References

References
1.
McCann
,
S.
,
Sato
,
Y.
,
Sundaram
,
V.
,
Tummala
,
R.
, and
Sitaraman
,
S. K.
,
2016
, “
Prevention of Cracking From RDL Stress and Dicing Defects in Glass Substrates
,”
IEEE Trans. Device Mater. Reliab.
,
16
(
1
), pp.
43
49
.
2.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1992
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
3.
Agrawal
,
A.
, and
Karlsson
,
A. M.
,
2006
, “
Obtaining Mode Mixity for a Bimaterial Interface Cracking Using the Virtual Crack Closure Technique
,”
Int. J. Fract.
,
141
(1–2), pp.
75
98
.
4.
Thouless
,
M. D.
, and
Jensen
,
H. M.
,
1992
, “
Elastic Fracture Mechanics of the Peel-Test Geometry
,”
J. Adhes.
,
38
(
3–4
), pp.
185
197
.
5.
Thouless
,
M. D.
, and
Yang
,
Q. D.
,
2008
, “
A Parametric Study of the Peel Test
,”
Int. J. Adhes. Adhes.
,
28
(
4–5
), pp.
176
184
.
6.
Crocombe
,
A. D.
, and
Adams
,
R. D.
,
1981
, “
Peel Analysis Using the Finite Element Method
,”
J. Adhes.
,
12
(
2
), pp.
127
139
.
7.
Williams
,
J. G.
,
1997
, “
Energy Release Rates for the Peeling of Flexible Membranes and the Analysis of Blister Tests
,”
Int. J. Fract.
,
87
(
3
), pp.
265
288
.
8.
Wei
,
Y.
, and
Zhao
,
H.
,
2007
, “
Peeling Experiments of Ductile Thin Films Along Ceramic Substrates—Critical Assessment of Analytical Models
,”
Int. J. Solids Struct.
,
45
(13), pp.
3779
3792
.
9.
Kim
,
K. S.
, and
Arvas
,
N.
,
1988
, “
Elastoplastic Analysis of the Peel Test
,”
Int. J. Solids Struct.
,
24
(
4
), pp.
417
435
.
10.
Sutton
,
M. A.
,
Deng
,
X.
,
Ma
,
F.
,
Newman
,
J. C.
, Jr.
, and
James
,
M.
,
2000
, “
Development and Application of a Crack Tip Opening Displacement-Based Mixed Mode Fracture Criterion
,”
Int. J. Solids Struct.
,
37
(
26
), pp.
3591
3618
.
11.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
12.
Rice
,
J. R.
,
Paris
,
P. C.
, and
Merkle
,
J. G.
,
1973
, “
Some Further Results of J-Integral Analysis and Estimates
,” ASTM International, Philadelphia, PA, Standard No. STP 536.
13.
Cherepanov
,
G. P.
,
1967
, “
Crack Propagation in Continuous Media
,”
J. App. Math. Mech.
,
31
(
3
), pp.
503
512
.
14.
Farris
,
R. J.
, and
Goldfarb
,
J. L.
,
1993
, “
An Experimental Partitioning of the Mechanical Energy Expended During Peel Testing
,”
J. Adhes. Sci. Technol.
,
7
(
8
), pp.
853
868
.
15.
Crocombe
,
A. D.
, and
Adams
,
R. D.
,
1982
, “
An Elasto-Plastic Investigation of the Peel Test
,”
J. Adhes.
,
13
(
3–4
), pp.
241
267
.
16.
Atkins
,
A. G.
, and
Mai
,
Y. W.
,
1986
, “
Residual Strain Energy in Elastoplastic Adhesive and Cohesive Fracture
,”
Int. J. Fract.
,
30
(
3
), pp.
203
221
.
17.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
18.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(2), pp.
100
104
.
19.
Irwin
,
G. R.
,
1960
, “
Plastic Zone Near a Crack and Fracture Toughness
,”
Seventh Sagamore Ordnance Materials Conference
, Raquette Lake, NY, pp.
63
78
.
20.
Rice
,
J. R.
,
1966
, “
Contained Plastic Deformation Near Cracks and Notches Under Longitudinal Shear
,”
Int. J. Fract. Mech.
,
2
(2), pp.
426
447
.
21.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1998
, “
Interface Strength, Work of Adhesion and Plasticity in the Peel Test
,”
Int. J. Fract.
,
93
, pp.
315
333
.
22.
Martiny
,
P.
,
Lani
,
F.
,
Kinloch
,
A. J.
, and
Pardoen
,
T.
,
2008
, “
Numerical Analysis of the Energy Contributions in Peel Tests: A Steady-State Multilevel Finite Element Approach
,”
Int. J. Adhes. Adhes.
,
28
(4–5), pp.
222
236
.
23.
Raghavan
,
S.
,
Schmadlak
,
I.
,
Leal
,
G.
, and
Sitaraman
,
S. K.
,
2014
, “
Study of Chip-Package Interaction Parameters on Interlayer Dielectric Crack Propagation
,”
IEEE Trans. Device Mater. Reliab.
,
14
(
1
), pp.
57
65
.
24.
Krieger
,
W. E. R.
,
Raghavan
,
S.
, and
Sitaraman
,
S. K.
,
2016
, “
Experiments for Obtaining Cohesive-Zone Parameters for Copper-Mold Compound Interfacial Delamination
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
9
), pp.
1389
1398
.
25.
Raghavan
,
S.
,
Schmadlak
,
I.
,
Leal
,
G.
, and
Sitaraman
,
S. K.
,
2016
, “
Mixed-Mode Cohesive Zone Parameters for Sub-Micron Scale Stacked Layers to Predict Microelectronic Device Reliability
,”
Eng. Fract. Mech.
,
153
, pp.
259
277
.
26.
Raghavan
,
S.
,
Schmadlak
,
I.
,
Leal
,
G.
, and
Sitaraman
,
S. K.
,
2014
, “
Framework to Extract Cohesive Zone Parameters Using Double Cantilever Beam and Four-Point Bend Fracture Tests
,”
15th IEEE International Conference on Thermal, Mechanical, and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSime
), Ghent, Belgium, Apr. 7–9.
27.
Raghavan
,
S.
, and
Sitaraman
,
S. K.
,
2017
, “
Shear Test on Hard Coated Flip-Chip Bumps to Measure Back End of Line Stack Reliability
,”
Eng. Fract. Mech.
,
178
, pp.
1
13
.
28.
Ostrowicki
,
G. T.
,
2012
, “
Magnetically Actuated Peel Test for Thin Film Interfacial Fracture and Fatigue Characterization
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA. https://smartech.gatech.edu/bitstream/handle/1853/45870/ostrowicki_gregory_t_201212_phd.pdf
29.
Hadavinia
,
H.
,
Kawashita
,
L.
,
Kinloch
,
A. J.
,
Moore
,
D. R.
, and
Williams
,
J. G.
,
2006
, “
A Numerical Analysis of the Elastic-Plastic Peel Test
,”
Eng. Fract. Mech.
,
73
(
16
), pp.
2324
2335
.
30.
Irwin
,
G. R.
,
1958
,
Handbuch der Physik
,
Springer
,
Berlin
.
31.
Rybickiand
,
E. F.
, and
Kanninen
,
M. F.
,
1977
, “
Finite Element Calculation of Stress Intensity Factors by Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
9
(
4
), pp.
931
938
.
32.
Spies
,
G. J.
,
1953
, “
The Peeling Test on Redux-Bonded Joints
,”
Aircr. Eng. Aerosp. Technol.
,
25
(
3
), pp.
64
70
.
33.
AST
M,
2016
, “
Standard Test Method for 90 Degree Peel Resistance of Adhesives
,” ASTM International, West Conshohocken, PA, Standard No.
D6862-11
. https://www.astm.org/Standards/D6862.htm
34.
Ostrowicki
,
G. T.
,
Fritz
,
N. T.
,
Okereke
,
R. I.
,
Kohl
,
P. A.
, and
Sitaraman
,
S. K.
,
2012
, “
Domed and Released Thin-Film Construct—An Approach for Material Characterization and Compliant Interconnects
,”
IEEE Trans. Device Mater. Reliab.
,
12
(
1
), pp.
15
23
.
35.
Ostrowicki
,
G. T.
, and
Sitaraman
,
S. K.
,
2012
, “
Magnetically Actuated Peel Test for Thin Films
,”
Thin Solid Films
,
520
(
11
), pp.
3987
3993
.
36.
Ostrowicki
,
G. T.
, and
Sitaraman
,
S. K.
,
2016
, “
Cyclic Magnetic Actuation Technique for Thin Film Interfacial Fatigue Crack Propagation
,”
Eng. Fract. Mech.
,
168
(Pt. A), pp.
1
10
.
37.
Asai
,
H.
,
Iwase
,
N.
, and
Suga
,
T.
,
2001
, “
Influence of Ceramic Surface Treatment on Peel-Off Strength Between Aluminum Nitride and Epoxy-Modified Polyaminobismaleimide Adhesive
,”
IEEE Trans. Adv. Packag.
,
24
(
1
), pp.
104
112
.
38.
Williams
,
J. A.
, and
Kauzlarich
,
J. J.
,
2006
, “
Energy and Force Distributions During Mandrel Peeling of a Flexible Tape With a Pressure-Sensitive Adhesive
,”
J. Adhes. Sci. Technol.
,
20
(
7
), pp.
661
676
.
39.
Kim
,
K.
,
Mukai
,
K.
,
Eastep
,
B.
,
Gaherty
,
L.
,
Kashyap
,
A.
, and
Brandt
,
L.
,
2014
, “
Adhesive Enabling Technology for Directly Plating Metal on Molding Resin
,” IEEE 64th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 27–30, pp.
279
283
.
40.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
41.
Huang
,
T.
,
Sundaram
,
V.
,
Raj
,
P. M.
,
Sharma
,
H.
, and
Tummala
,
R.
,
2014
, “
Adhesion and Reliability of Direct Cu Metallization of Through-Package Vias in Glass Interposers
,” IEEE 64th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 27–30, pp.
2266
2270
.
42.
Voce
,
E.
,
1948
, “
The Relationship Between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Met.
,
74
(1), pp.
537
562
.
43.
Simons
,
G.
,
2004
, “
Mechanical Size Effects in Thin Copper Foils: An Experimental Study
,”
Ph.D. thesis
, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiEnMfAoqvVAhXnj1QKHQw-BqgQFggoMAA&url=http%3A%2F%2Fe-collection.library.ethz.ch%2Feserv%2Feth%3A27479%2Feth-27479-02.pdf&usg=AFQjCNE7YKU1gRxxSgPxnPNNX7kBHmUVQw
44.
Simons
,
G.
,
Weippert
,
C.
,
Dual
,
J.
, and
Villian
,
J.
,
2006
, “
Size Effects in Tensile Testing of Thin Cold Rolled and Annealed Cu Foils
,”
Mater. Sci. Eng. A
,
416
(1–2), pp.
290
299
.
45.
Sharma
,
T.
,
Shaver
,
P.
,
Brown
,
D. A.
,
Brüning
,
R.
,
Peldzinski
,
V.
, and
Ferror
,
A.
,
2016
, “
Time Evolution of Stress and Microstructure in Electroplated Copper Films
,”
Electrochim. Acta
,
196
, pp.
479
486
.
46.
Volinsky
,
A. A.
,
Moody
,
N. R.
, and
Gerberich
,
W. W.
,
2002
, “
Interfacial Toughness Measurements for Thin Films on Substrates
,”
Acta Mater.
,
50
(
3
), pp.
441
466
.
47.
Tymiak
,
N. I.
,
Volinsky
,
A. A.
,
Kriese
,
M. D.
,
Downs
,
S. A.
, and
Gerberich
,
W. W.
,
2000
, “
The Role of Plasticity in Bimaterial Fracture With Ductile Interlayers
,”
Metall. Mater. Trans. A
,
31
(
13
), pp.
863
872
.
48.
Krieger
,
W. E. R.
,
Raghavan
,
S.
,
Kwatra
,
A.
, and
Sitaraman
,
S. K.
,
2014
, “
Cohesive Zone Experiments for Copper/Mold Compound Delamination
,” IEEE 64th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 27–30, pp.
983
989
.
49.
Shih
,
C. F.
,
Moran
,
B.
, and
Nakamura
,
T.
,
1986
, “
Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body
,”
Int. J. Fract.
,
30
(2), pp.
79
102
.https://doi.org/10.1007/BF00034019
50.
Dattaguru
,
B.
,
Venkatesha
,
K. S.
,
Ramamurthy
,
T. S.
, and
Buchholz
,
F. G.
,
1994
, “
Finite Element Estimates of Strain Energy Release Rate Components at the Tip of an Interface Crack Under Mode I Loading
,”
Eng. Fract. Mech.
,
49
(
3
), pp.
451
463
.
You do not currently have access to this content.